
Maeve Mulholland
Director of AI

Authors: Maeve Mulholland, Fred Frey, Tim Nary

october 21, 2022

Playing Cat + Mouse
with the Attacker
Item Set Mining in the Registry

1

Today,
we’ll discuss…

● The Trouble with Cyber Data
→ Datasets for Machine Learning

→ Using Data for Threat Detection

● Strategies for Using Cyber Data
→ SnapAttack's Datasets

→ Graph Analysis

● Catching the Mouse
→ Scenario

→ Hunting in the Registry

● Our Catch
→ Results + Lessons Learned

2

Overview

Part 01.

The Trouble
with Cyber Data

3

01. the trouble with cyber data

Datasets for
Machine Learning

4

5

using ml for image recognition

Tesla’s Self-Driving Vehicle - How it Works

The Trouble with Cyber Data → Datasets for ML

01. collect all inputs

Collect many photos from every angle (including things like partial and
obscure stop signs)

02. weed out variables

Represent and simulate all different lighting schemes

03. classify + label

Label all examples

04. test, tune, + improve

Monitor and collect failures to correct models

6

ml for cyber → a different game

But what if the stop sign
had legs?
And there were like… four
of them.

The Trouble with Cyber Data → Datasets for ML

7

ML in cyber → Stop signs with legs.

The Trouble with Cyber Data → Datasets for ML

01. collect all inputs → easier said than done

Collect many photos from every angle → Sparse set of photographs that don't represent all
conditions a stop sign may be found in. Oh, and the stop signs hide from the photographers.

02. weed out variables → hard to figure out which variables to look for

Represent and simulate all different lighting schemes → It did a somersault—no one knew they
could do that!

03. classify + label → hard to classify if you don’t know what you’re looking at

Label all examples → Difficult to label the images, because no one really knows what they look like

04. test, tune, + improve → hard to measure and therefore, hard to improve

Monitor and collect failures to correct models → Few opportunities for monitoring success and
failure of a model

8

This is why ML for threat detection is hugely challenging.
Most ML efforts in the domain have drifted away from supervised methods.

The Trouble with Cyber Data → Datasets for ML

to build a classifier for a threat…

Imbalanced Data: Voluminous data
with threat examples being very rare

Labeling: Labeling data requires
expertise needed elsewhere

Examples are Context Dependent:
Threats may look different in
different environments

True Variance: True variance is hard
to represent in datasets

Measurement: Monitoring
performance requires solving the
problem some other way

Unknown Unknowns: Often, we do
not know what we're looking for

01. the trouble with cyber data

Using Data for
Threat Detection

9

The
Challenge "Drinking from a firehose” / alert fatigue is a constant refrain, yet

actual threats are rare. And, every environment is different and
detecting a threat requires understanding the context it appears in.

It’s rare to find talent that can immediately analyze and understand
threats and write heuristics for detecting them.

Expertise Shortage

Monitoring and evaluating performance requires a way to
understand what you're missing
Minimizing the unknown-unknowns and understanding the false
negatives

Are We Protected?

Voluminous Unique Data

10

Many of the challenges faced by a SOC
are the same challenges blocking the
construction of a dataset
for supervised ML in threat detection.

The Trouble with Cyber Data → Using Data for Threat Detection

Process Is Adversarial

As detection methods are developed, hackers develop new
methods of evasion.

part 02.

Strategies for Using
Cyber Data

11

02. strategies for using cyber data

SnapAttack’s
Data Sets

12

SnapAttack’s Data Strategy

Strategies for Cyber Data → SnapAttack's Datasets

Attack Library

SnapAttack's goal is to give the advantage to the defender by building a dataset of contextualized and labeled attacks in a
digestible format, and to collide them with detection analytics built by expert threat hunters.

Logged VM sessions with attack
labeled by process or timestamp

Behavioral detection
queries written in Sigma

13

Detection Repo

Undetected
Attacks

Untested
Detections

Validated Detections of
Attacks

Free Community Edition
www.snapattack.com/community

SnapAttack’s
Threat Capture

Strategies for Cyber Data → SnapAttack's Datasets

Attack Library

Logged VM sessions with attack
labeled by process or timestamp

14

Free Community Edition
www.snapattack.com/community

Service Creation Four Ways
app.snapattack.com/threat/WVDbr

02. strategies for using cyber data

Graph Analysis

15

Detection Analytics
(4,802)

Attack Instances
(2,266)

16

Strategies for Cyber Data → Graph Analysis

Data Structure

Validated Hits

Subgraph of "Sticky Keys" exploits
and related detection analytics.
Extracted from main graph
structure via community
detection.

SNAPATTACK DATASET
STICKY KEYS SUBGRAPH

ATT&CK T1546.008

+

Detection Analytics
(4,802)

Attack Instances
(2,266)

17

Strategies for Cyber Data → Graph Analysis

Data Structure

Validated Hits

Subgraph of "Sticky Keys" exploits
and related detection analytics.
Extracted from main graph
structure via community
detection.

STICKY KEYS SUBGRAPH
ATT&CK T1546.008

• Detection suite extraction with
community detection

• Coverage calculations for
ATT&CK cells

• Similarity calculations

• Graph features for ML

part 03.

Catching the Mouse

18

03. catching the mouse

The Scenario

19

How do we use this data to
automate threat detection
development?

20

Catching the Mouse → The Scenario

Jared Atkinson
Playing Detection with a Full Deck

scenario

Malicious
Service Creation

"If your detection’s goal is to identify
malicious scheduled task creation,
then you must first be able to identify
ALL scheduled task creation."

source

https://posts.specterops.io/thoughts-on-detection-3c5cab66f511

21

Catching the Mouse → The Scenario

HKLM\System\CurrentControlSet\Servi
ces\<ServiceName>

Creation of a schedule service requires
the creation of this key:

scenario

Malicious
Service Creation

Registry events are common to all windows environments

Registry events are fundamental to the OS; many actions are
inextricable from their associated key
Age old problem, but the detections are brittle.

Must Handle Variance Introduced by the
Adversary (mouse can't hide)

We have time stamps and sysmon registry events for all attacks

Training Does not Require Additional Labeling

Robust Against Environment Changes

22

Catching the Mouse → The Scenario

HKLM\System\CurrentControlSet\Servi
ces\<ServiceName>

Creation of a schedule service requires
the creation of this key:

scenario

Malicious
Service Creation

The Big Question
Can we create a system that will learn a
"base condition" given the data we have
available?

Service Creation Variations
• sc.exe create

• PowerShell New-Service cmdlt

• SharePersist.exe

• WMI

Service Creation Four Ways
app.snapattack.com/threat/WVDbr

03. catching the mouse

Hunting in
the Registry

23

24

Catching the Mouse → Hunting in the Registry

HKLM\SOFTWARE\Microsoft\Windows Search\UsnNoti...
HKU\S-1-5-21-217647840-2202413550-2422854346-1...
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion...
HKU\S-1-5-21-217647840-2202413550-2422854346-1...
HKU\S-1-5-21-217647840-2202413550-2422854346-1...
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion...
HKU\S-1-5-21-217647840-2202413550-2422854346-1...

...
t0

ti-1

ti

Registry Keys From Log Entries Within Time Window
(Sysmon Events 12, 13, 14)

Additional
Dataset Statistics

Creating Registry Data

• Event Generation Ran for 17 hours
• 364,675 registry events were

logged
• 89,248 unique keys

Service Creation
Method

Variance​

• MS Office Suite​
• MS Paint​
• Notepad
• Web Browsing
• Remote Desktop Activity

• sc.exe create
• PowerShell New-Service

cmdlt
• SharPersist.exe
• WMI

• Timing​
• Service Names​
• Service Creation Method​

Noise​

25

Catching the Mouse → Hunting in the Registry

Processing Registry Data

Key Normalization
Keys exhibit common patterns with
small changes. There are common
keys structures that are common
except for service names, GUIDs,
identifier strings, etc.

Replacements
• ServiceIDs
• Process GUIDs
• ProgIDs
• Common Service IDs
• ComponentFamily strings
• Misc. others

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_159ebf9

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_159ebf9\ImagePath

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_159ebf9\FailureActions

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_15d736f\Description

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\ImagePath

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\FailureActions

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\Description

Initial Set of Keys Example

26

Catching the Mouse → Hunting in the Registry

Processing Registry Data

Key Normalization
Keys exhibit common patterns with
small changes. There are common
keys structures that are common
except for service names, GUIDs,
identifier strings, etc.

Replacements
• ServiceIDs
• Process GUIDs
• ProgIDs
• Common Service IDs
• ComponentFamily strings
• Misc. others

Also truncate long key paths to N=7 elements

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_<CSID>
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_<CSID>\ImagePath
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_<CSID>\FailureActions
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_<CSID>\Description

After Substitution

Additional
Dataset Statistics

• Event Generation Ran for 17 hours
• 364,675 registry events
• 89,248 unique keys
• 28,438 unique processed keys
• 65% Reduction in unique key

count

27

Catching the Mouse → Hunting in the Registry

Tokenize keys by path element
after substitutions

Perform Agglomerative
Clustering Using Jaccard
Distance

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_159ebf9\Description

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\FailureActions

HKLM
CurrentControlSet

System

Services
Description

ConsentUxUserSvc_<CSID>

key 1

Token
Set { }

HKLM
CurrentControlSet

System

Services

ConsentUxUserSvc_<CSID>Token
Set { }FailureActions

key 2

D(K1, K2) = 1 – J(K1 Token Set, K2 Token Set) = 1- 5/7 = 0.286

Clustering
Registry Data

28

Catching the Mouse → Hunting in the Registry

Clustering
Registry Data
Example Key Clusters

hklm\components\deriveddata\components\amd64_microsoft-windows-appx-
dep\f!appxapplicabilityblob.dll
hklm\components\deriveddata\components\amd64_microsoft-windows-appx-

dep\f!appxupgrademigrationplugi_90cf
hklm\components\deriveddata\components\amd64_microsoft-windows-appx-dep
hklm\components\deriveddata\components\amd64_microsoft-windows-appx-dep\s256h
hklm\components\deriveddata\components\amd64_microsoft-windows-appx-
dep\f!settings.dat

...

Example Cluster 1 (N=14)

hku\.default\software\microsoft\systemcertificates\root
hku\.default\software\microsoft\systemcertificates\trust\ctls
hku\.default\software\microsoft\systemcertificates\disallowed\certificates

hku\<sid>\software\microsoft\systemcertificates\trust
hku\<sid>\software\microsoft\systemcertificates\trustedpeople
...

hku\<sid>\software\microsoft\input\typinginsights
hku\<sid>\software\microsoft\input\tipc
hku\<sid>\software\microsoft\input\ec
hku\<sid>\software\microsoft\input\typinginsights\insights

Example Cluster 2 (N=93)

Example Cluster 3 (N=4)Cluster Statistics

• 7148 clusters (92% reduction)
• 148 clusters with N > 10
• 95% of clusters N < 6
• Largest cluster N = 2502

part 04.

Our Catch

29

04. our catch

Results +
Lessons Learned

30

31

Our Catch → Results

28,438
Unique Normalized
Keys

7,148
Clusters

1,747
Transactions for FIM to analyze

Results

hklm\system\currentcontrolset\services\lqdvlqzy7szi4 5c3jb1_poy6xtnmhmd\start
hklm\system\currentcontrolset\services\ejx-+agc07wfl3ae8rwhm65fyn9ptduo
hklm\system\currentcontrolset\services\abveylieks6bml5a+obgdc21kvhqfjz7\start
...

Pattern Mining Results

SUPPORT ITEM SETS

0.6209 {Clust 0001}

0.3946 {Clust 0027}

0.3919 {Clust 0027, Clust 0001}

0.3603 {Clust 2599}

Negative Baseline

0.8969 {Clust 0027}

0.5954 {Clust 2599}

0.3511 {Clust 0064}

Cluster 0001 N=6045

Cluster 0027 N=98
hku\<sid>\software\microsoft\onedrive\accounts\lastupdate
hku\<sid>\software\microsoft\windows\shell\bags
hku\<sid>\software\miscrosoft\edge\extensions

...

Cluster 2599 N=1
hklm\system\currentcontrolset\services\bam\state\usersettings

Cluster 0064 N=6
hku\<sid>\software\microsoft\gamebarapi\input\inputredirected
hku\<sid>\software\microsoft\input\tpic
hku\<sid>\software\miscrosoft\gamebarapi\input
...

32

Our Catch → Lessons Learned

The pilot study is a success!
Explore this methodology with other types of attacks.

01.
"Attack as code" was critical for
this project.

03.
Frequent Item Set Mining may
be unnecessary.

02.
Registry data per processing
technique seems very
promising. Clustering merits
further evaluation.

Lessons Learned

Free Community Edition
www.snapattack.com/community

Service Creation Four Ways
app.snapattack.com/threat/WVDbr

