

october 21, 2022 **Playing Cat + Mouse with the Attacker** Item Set Mining in the Registry

Maeve Mulholland Director of Al

Authors: Maeve Mulholland, Fred Frey, Tim Nary

Today, we'll discuss...

4 SNAPATTACK

The Trouble with Cyber Data

- \rightarrow Datasets for Machine Learning
- \rightarrow Using Data for Threat Detection

Strategies for Using Cyber Data

- → SnapAttack's Datasets
- \rightarrow Graph Analysis

Catching the Mouse

→ Scenario

 \rightarrow Hunting in the Registry

Our Catch

→ Results + Lessons Learned

Part 01.

The Trouble with Cyber Data

01. the trouble with cyber data Datasets for Machine Learning

using ml for image recognition Tesla's Self-Driving Vehicle - How it Works

01. collect all inputs

Collect many photos from every angle (including things like partial and obscure stop signs)

02. weed out variables Represent and simulate all different lighting schemes

03. classify + label Label all examples

04. test, tune, + improve Monitor and collect failures to correct models

ml for cyber → a different game But what if the stop sign had legs? And there were like... four

of them.

ML in cyber -> Stop signs with legs.

01. collect all inputs \rightarrow easier said than done

Collect many photos from every angle \rightarrow Sparse set of photographs that don't represent all conditions a stop sign may be found in. Oh, and the stop signs hide from the photographers.

02. weed out variables → hard to figure out which variables to look for Represent and simulate all different lighting schemes → It did a somersault—no one knew they could do that!

03. classify + label → hard to classify if you don't know what you're looking at Label all examples → Difficult to label the images, because no one really knows what they look like

04. test, tune, + improve → hard to measure and therefore, hard to improve Monitor and collect failures to correct models → Few opportunities for monitoring success and failure of a model

This is why ML for threat detection is hugely challenging.

Most ML efforts in the domain have drifted away from supervised methods.

to build a classifier for a threat...

Imbalanced Data: Voluminous data with threat examples being very rare

Examples are Context Dependent: Threats may look different in different environments

True Variance: True variance is hard to represent in datasets

Labeling: Labeling data requires expertise needed elsewhere

Measurement: Monitoring performance requires solving the problem some other way

Unknown Unknowns: Often, we do not know what we're looking for

01. the trouble with cyber data Using Data for Threat Detection

The Challenge

Many of the challenges faced by a SOC are the **same challenges blocking the construction of a dataset** for supervised ML in threat detection.

Process Is Adversarial

As detection methods are developed, hackers develop new methods of evasion.

Voluminous Unique Data

"Drinking from a firehose" / alert fatigue is a constant refrain, yet actual threats are rare. And, every environment is different and detecting a threat requires understanding the context it appears in.

Expertise Shortage

It's rare to find talent that can immediately analyze and understand threats and write heuristics for detecting them.

Are We Protected?

Monitoring and evaluating performance requires a way to understand what you're missing Minimizing the unknown-unknowns and understanding the false negatives

11

Strategies for Using Cyber Data

02. strategies for using cyber data SnapAttack's Data Sets

SnapAttack's Data Strategy

SnapAttack's goal is to give the advantage to the defender by building a dataset of contextualized and labeled attacks in a digestible format, and to collide them with detection analytics built by expert threat hunters.

SnapAttack's Threat Capture

Logged VM sessions with attack labeled by process or timestamp

Free Community Edition
www.snapattack.com/community

Service Creation Four Ways app.snapattack.com/threat/WVDbr

Service Creation Four Ways - CAMLIS 2022

Organization: SnapAttack Community Created By: Tim Nary

Detection Hits 🖉 🔒 Restricted

This threat capture shows four different ways that an attacker can create a new service (T1543.003 - Create or Modify System Process: Windows Servi be used as both a persistence mechanism and sometimes privilege escalation mechanism. There are multiple different ways to detect new services Windows Security Event 4697, EDR process creation or registry events). But which detection is "best"? Show More

6) SNAPATTACK

02. strategies for using cyber data Graph Analysis

Data Structure

STICKY KEYS SUBGRAPH ATT&CK T1546.008

Subgraph of "Sticky Keys" exploits and related detection analytics. Extracted from main graph structure via community detection.

Detection Analytics

Attack Instances (2,266)

Validated Hits

Data Structure

- Detection suite extraction with community detection
- Coverage calculations for ATT&CK cells
- Similarity calculations
- Graph features for ML

STICKY KEYS SUBGRAPH ATT&CK T1546.008

> Subgraph of "Sticky Keys" exploits and related detection analytics. Extracted from main graph structure via community detection.

Detection Analytics (4,802)

Attack Instances (2,266)

Validated Hits

part 03.

Catching the Mouse

03. catching the mouse The Scenario

How do we use this data to automate threat detection development?

5NAPATTACK

Service Creation

"If your detection's goal is to identify malicious scheduled task creation, then you must first be able to identify **ALL** scheduled task creation."

> Jared Atkinson Playing Detection with a Full Deck <u>source</u>

Robust Against Environment Changes

Registry events are common to all windows environments

scenario

Malicious Service Creation

Creation of a schedule service requires the creation of this key:

HKLM\System\CurrentControlSet\Servi ces\<ServiceName>

Must Handle Variance Introduced by the Adversary (mouse can't hide)

Registry events are fundamental to the OS; many actions are inextricable from their associated key Age old problem, but the detections are brittle.

Training Does not Require Additional Labeling

We have time stamps and sysmon registry events for all attacks

SNAPATTACK

scenario

Malicious Service Creation

Creation of a schedule service requires the creation of this key:

HKLM\System\CurrentControlSet\Servi
ces\<ServiceName>

Service Creation Variations

- sc.exe create
- PowerShell New-Service cmdlt
- SharePersist.exe
- WMI

The Big Question

Can we create a system that will learn a "base condition" given the data we have available?

Service Creation Four Ways app.snapattack.com/threat/WVDbr

03. catching the mouse Hunting in the Registry

Creating Registry Data

Service Creation Method

- sc.exe create
- PowerShell New-Service cmdlt
 - SharPersist.exe
 - WMI

HKLM\SOFTWARE\Microsoft\Windows Search\UsnNoti... HKU\S-1-5-21-217647840-2202413550-2422854346-1... HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion... HKU\S-1-5-21-217647840-2202413550-2422854346-1... HKU\S-1-5-21-217647840-2202413550-2422854346-1... HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion... HKU\S-1-5-21-217647840-2202413550-2422854346-1...

Registry Keys From Log Entries Within Time Window

Variance

- Service Names
- Service Creation Method

Noise

- MS Office Suite
 - MS Paint

Timing

- Notepad
- Web Browsing
- Remote Desktop Activity

Additional

Dataset Statistics

(Sysmon Events 12, 13, 14)

- Event Generation Ran for 17 hours
- 364,675 registry events were logged
- 89,248 unique keys

Processing Registry Data

Key Normalization

Keys exhibit common patterns with small changes. There are common keys structures that are common except for service names, GUIDs, identifier strings, etc.

Replacements

- ServiceIDs
- Process GUIDs
- ProgIDs
- Common Service IDs
- ComponentFamily strings
- Misc. others

Initial Set of Keys Example

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_159ebf9
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_159ebf9\ImagePath
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_159ebf9\FailureActions
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\ImagePath
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\FailureActions
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\FailureActions
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\FailureActions
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\FailureActions
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\FailureActions

Processing Registry Data

Key Normalization

Keys exhibit common patterns with small changes. There are common keys structures that are common except for service names, GUIDs, identifier strings, etc.

Replacements

- ServiceIDs
- Process GUIDs
- ProgIDs
- Common Service IDs
- ComponentFamily strings
- Misc. others

After Substitution

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_<CSID>
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_<CSID>\ImagePath
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_<CSID>\FailureActions
HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_<CSID>\Description

Also truncate long key paths to N=7 elements

Additional

Dataset Statistics

- Event Generation Ran for 17 hours
- 364,675 registry events
- 89,248 unique keys
- 28,438 unique processed keys
- 65% Reduction in unique key count

Clustering Registry Data

Tokenize keys by path element after substitutions

Perform Agglomerative Clustering Using Jaccard Distance

key 1

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_159ebf9\Description

key 2

HKLM\System\CurrentControlSet\Services\ConsentUxUserSvc_3b34c9e\FailureActions

 $D(K1, K2) = 1 - J(K_1 \text{ Token Set}, K_2 \text{ Token Set}) = 1 - 5/7 = 0.286$

Clustering Registry Data

Example Key Clusters

Cluster Statistics

- 7148 clusters (92% reduction)
- 148 clusters with N > 10
- 95% of clusters N < 6
- Largest cluster N = 2502

Example Cluster 1 (N=14)

hklm\components\deriveddata\components\amd64_microsoft-windows-appxdep\f!appxapplicabilityblob.dll

hklm\components\deriveddata\components\amd64_microsoft-windows-appxdep\f!appxupgrademigrationplugi_90cf

hklm\components\deriveddata\components\amd64_microsoft-windows-appx-dep
hklm\components\deriveddata\components\amd64_microsoft-windows-appx-dep\s256h
hklm\components\deriveddata\components\amd64_microsoft-windows-appxdep\f!settings.dat

Example Cluster 2 (N=93)

hku\.default\software\microsoft\systemcertificates\root hku\.default\software\microsoft\systemcertificates\trust\ctls hku\.default\software\microsoft\systemcertificates\disallowed\certificates hku\<sid>\software\microsoft\systemcertificates\trust hku\<sid>\software\microsoft\systemcertificates\trust ...

Example Cluster 3 (N=4)

hku\<sid>\software\microsoft\input\typinginsights
hku\<sid>\software\microsoft\input\tipc
hku\<sid>\software\microsoft\input\ec
hku\<sid>\software\microsoft\input\typinginsights\insights

part 04.

Our Catch

04. our catch Results + Lessons Learned

Results

Pattern Mining Results	
SUPPORT	ITEM SETS
0.6209	{Clust 0001}
0.3946	{Clust 0027}
0.3919	{Clust 0027, Clust 0001}
0.3603	{Clust 2599}
Negative Baseline	
0.8969	{Clust 0027}
0.5954	{Clust 2599}
0.3511	{Clust 0064}

28,438 Unique Normalized Keys

7,148 Clusters **1,747** Transactions for FIM to analyze

Cluster 0001 N=6045

hklm\system\currentcontrolset\services\lqdvlqzy7szi4 5c3jb1_poy6xtnmhmd\start hklm\system\currentcontrolset\services\ejx-+agc07wfl3ae8rwhm65fyn9ptduo hklm\system\currentcontrolset\services\abveylieks6bml5a+obgdc21kvhqfjz7\start

Cluster 0027 N=98

hku\<sid>\software\microsoft\onedrive\accounts\lastupdate
hku\<sid>\software\microsoft\windows\shell\bags
hku\<sid>\software\miscrosoft\edge\extensions

Cluster 2599 N=1

hklm\system\currentcontrolset\services\bam\state\usersettings

Cluster 0064 N=6

hku\<sid>\software\microsoft\gamebarapi\input\inputredirected hku\<sid>\software\microsoft\input\tpic hku\<sid>\software\miscrosoft\gamebarapi\input

5NAPATTACK

Lessons Learned

01. "Attack as code" was critical for this project.

02.

Registry data per processing technique seems very promising. Clustering merits further evaluation. 03.

Frequent Item Set Mining may be unnecessary.

The pilot study is a success!

Explore this methodology with other types of attacks.

Free Community Edition
www.snapattack.com/community

Service Creation Four Ways app.snapattack.com/threat/WVDbr