Web Shell Case Study

Lindsey Lack John Conwell

Applied Threat Research Gigamon Threat Insight

- + Motivation
- + Web Shell 101
- + Setup
- + Case Study with tips and guidelines

Assumptions

- Enterprise volume network data
 - At least North-South being captured
- Zeek-style metadata being generated and available

Problem Scoping

- Limit to external sources and internal servers
- Limit to HTTP
- Limit to web shell hosted by new file

Threat Emulation

- Started with 8 manufactured web shell episodes
 - Behinder, ASPXSpy, Godzilla, antsword, etc
 - Create PCAPs from lab environment
 - Extract Zeek metadata

Hiding the Needle

Effectively weaving sample data into real network traffic

Emulated traffic

Issues with host and destination IP field pairs

192.168.38.106	192.168.38.106
null	192.168.38.106

realsite.com	10.2.0.24
realsite.com	10.2.0.26

realsite.com	10.2.0.24
realsite2.com	10.2.0.24

Issues with host and destination IP field pairs

Issues with multiple user agents

Final algorithm

Final algorithm example

Final algorithm

Dealing with Noise

- Specific noise for your environment
 - Possible example: Requests from internal addresses, but they look external since they go through a proxy
- Heuristic / Pattern
 - Scanner patterns: consistent User-Agent, source IP, uri_path with many destination IPs and failed connections
- Signature
 - Detection of bot user agents via regex list
 - E.g.: Pinterestbot, Baiduspider, YandexBot, MoodleBot

Tip: Signature-based approaches to feature generation work better for noise than signal

Attackers may try to adapt to avoid detection, but noise sources don't care

Hard Cuts

- Expert decision
 - Wrong decision can result in FP
- When trying to reduce false positives, having a smaller set of items to start with helps
 - Reduces data set imbalance
- Can make hard cuts soft again

One webshell used the hard-coded User-Agent of: Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)

Threat Emulation

- Started with 8 manufactured web shell episodes
 - Behinder, ASPXSpy, Godzilla, antsword, etc
- Early model was too effective
 - Recognized that one of the key features corresponded with the process used to generate examples

Threat

Emulation

Modeling

- Ultimately generated 18 episodes
 - Increased variability of attacker behavior in additional episodes
 - Made problem more difficult

Modeling

Finding a suitable model

Modeling

Using multiple models

- + High performing
 - Ensemble of Support Vector Machine (with optimized parameters) and AdaBoosted trees
 - Effective for generalized detection with low FP rate
- + Explainable
 - ExplainableBoostingClassifier
 - Increased chance of FPs, but useful for hunting and provides context
 - Specifically select features for:
 - Independence (lack of correlation)
 - Understandability
 - Value to model

Summarized reasons for prediction (Negative sample, negative prediction)

Meta Validation

 Embedded validation into process, not just model creation

10 secrets for creating a crazy good network detection model

(Do these and you'll put Suricata signature writers out of a job)

- Overlay emulated malicious traffic over real traffic
- Use high-level protocol information (Zeek)
- Focus detection scope
- Maintain feedback loop between emulation and modeling
- Carefully define object of focus
- Remove noise (with signatures if needed)
- Make hard cuts (prudently)
- Be the decision tree (to find features)
- Explain your work
- Validate outside the process

Questions