

Efficient Malware Analysis Using Metric Embeddings

Authors: Ethan Rudd, David Krisiloff, Daniel Olszewski, Edward Raff, James Holt

Presenter: Ethan Rudd

Staff Data Scientist

About This Project

Authors + Affiliations

- A collaboration between Mandiant Inc. and UMD Laboratory for Physical Sciences (LPS).
- Began during a Mandiant internship (2020); later sponsored by LPS.
- Current Affiliations:
 - Mandiant: Ethan Rudd, David Krisiloff
 - Booz Allen Hamilton: Edward Raff
 - LPS: James Holt
 - University of Florida: Daniel Olszewski

ML Malware Analysis: Existing and Idealized Solutions

Commercial ML Malware Analysis Solutions Idealized Generic Embeddings Our Approach: Metric Learning

Issues with Existing Solutions

Commercial ML Malware Analysis Solutions	Idealized Generic Embeddings Our Approach: Metric Learning		
Lots of industry focus on detection.	a) Malware Family		
 Numerous other ML malware analysis use-cases Classification, information retrieval, and analysis contextualization. 	Shlayer ZeuS Agent Tesla		
	es b) Attribute tags		
	Downloader Ransomware Spyware		
	c) ATT&CK TTP Summarization		
 Issues with training task-specific representations: Time + resource intensive Limited number of labeled samples Model update + storage complexity 	Initial Access Execution Defense Evasion		
	d) Exploited Vulnerability Analysis		
	CVE-2022-0010 CVE-2021-0002 CVE-2022-0067		
	e) Authorship Attribution		

APT-12

APT-33

APT-42

Examples of additional malware analysis use cases and labeling.

ML Malware Analysis: Existing and Idealized Solutions

Commercial ML Malware Analysis Solutions

Idealized Generic Embeddings

Our Approach: Metric Learning

Learn a base model with the following attributes:

- Incorporate contextual/semantic data useful for multiple problem scenarios
- **Transferable** to different analysis tasks with minimal additional telemetry/labeling
- Low-dimensional output representation
 - portability
 - transfer training efficiency
 - Indexing and information retrieval support

ML Malware Analysis: Existing and Idealized Solutions

Commercial ML Malware Analysis Solutions

Idealized Generic Embeddings

Our Approach: Metric Learning

- Use <u>metric learning</u> to arrive at a generic representation where neighboring samples are contextually and semantically similar
- Incorporate enrichment from multiple data sources to arrive at a generic embedding space
 - No assumption about downstream task labels a priori
- Use the learnt embedding for multiple downstream tasks, e.g.:
 - Fine-tuning novel classifiers
 - Retrieval via some distance measure
- Disclaimer: we make no strict metric assumption

System Design

Upstream Training

System Design

Downstream Use

Defining Similarity

CAPA: Malware Capabilities Analysis

Mandiant's CAPA Project:

- Open source tool released by Mandiant's FLARE team
- Utilizes a variety of disassembly rules/heuristics to output capabilities and MITRE ATT&CK tactics utilized by different executable formats
 - Current support for PE, ELF, .NET, and shellcode files

Repository: https://github.com/mandiant/capa

Blog Post: <u>https://www.mandiant.com/resources/capa-automatically-identify-malware-capabilities</u>

Defining Similarity

Example CAPA Output

\$ capa Lab01-01.dll_			
md5 path	290934c61de9176ad682ffdd65f0a669 Lab01-01.dl1_		
+			
CAPABILITY	l	NAMESPACE	
receive data send data initialize Winsock libra receive data on socket send data on socket connect TCP socket create TCP socket act as TCP client check mutex create mutex resolve DNS create process	ary	communication communication communication/socket communication/socket/receive communication/socket/send communication/socket/tcp communication/socket/tcp communication/socket/tcp communication/tcp/client host-interaction/mutex host-interaction/mutex host-interaction/mutex host-interaction/metwork/dns/resolve host-interaction/process/create	

Metric Embeddings

Intuition

Input Space Embedding Space

Enriching Metric Embeddings w/ CAPA Outputs

Enrichment Approach 1: Contrastive Loss

- Contrastive loss idea:
 - Push together / pull apart pairs of positively / negatively associated samples

$$L_{contrastive} = [d_p - m_{pos}]_+ + [m_{neg} - d_n]_+$$

- CAPA Enrichment
 - Form distinct CAPA clusters
 - apply contrastive loss on an in vs. out of cluster basis
- Issue: does not incorporate notion of inter-cluster "similarity"
 - i.e., some clusters are more similar than others

Enriching Metric Embeddings w/ CAPA Outputs

Coarse Enrichment vs. Fine-Grained Enrichment

Coarse Approach: Contrastive Learning

Fine-Grained Approach: ?

Enriching Metric Embeddings w/ CAPA Outputs

Enrichment Approach 2: Spearman Rank Loss

- Utilizes recent research on teaching neural nets differentiable sorting/ranking Blondel, Mathieu, et al. "Fast differentiable sorting and ranking." *International Conference on Machine Learning*. PMLR, 2020. URL: <u>http://proceedings.mlr.press/v119/blondel20a/blondel20a.pdf</u>
- Loss Function: Spearman's Rank Correlation Coefficient

$$r = 1 - \frac{6\sum (R(X_i) - R(Y_i))^2}{n(n^2 - 1)}$$

- Aims to measure the degree to which similarity ranks predicted by the network differ from the ground truth
- CAPA Enrichment
 - Ground truth established via Jaccard similarity of CAPA capabilities

Base Architecture

Embedding Network

Experimental Protocols

- > Metric embeddings derived using CAPA v1 telemetry for the training partition of the EMBER dataset.
- > Fine tuning was performed over extracted embeddings under five different experimental regimes.
- ➢ Fine Tuning on EMBER 2018
 - 1) Fine Tune on EMBER 2018 Train; Test EMBER 2018 (Malicious/Benign)
 - 2) Fine Tune on EMBER 2018 Train; Test EMBER 2018 (Malware Family)
 - 3) Fine Tune on EMBER 2018 Train; Test SOREL-20M (Malicious/Benign)
- ➢ Fine Tuning on SOREL-20M
 - 4) Fine Tune on SOREL-20M Train; Test SOREL-20M (Malicious/Benign)
 - 5) Fine Tune on SOREL-20M Train; Test SOREL-20M (Semantic Attribute Tags)

Experiment 1: EMBER Fine Tune; EMBER Eval (Malicious/Benign)

- Mixed Spearman + Contrastive Loss outperforms other metric learning loss functions
- Underperforms "baseline" (~0.995 AUC)

Experiment 2: EMBER Fine Tune; EMBER Eval (Malware Family)

- Consistent order w/ results from malicious/benign tasks
- Within striking distance of "baseline" (73.3% Accuracy)

Experiment 3: EMBER Fine Tune SOREL-20M Eval (Malicious/Benign)

- No direct training on SOREL
- Again, consistent ordering w.r.t. loss combinations
- Performance degradation

Experiment 4: Transfer SOREL-20M; Eval SOREL-20M (Malicious/Benign)

- Results are again consistent in ordering w/ prior experimentation
- SOREL-20M lightGBM benchmark: 0.981 ± 0.002

Experiment 5: Transfer SOREL-20M; Eval SOREL-20M (Semantic Tags)

- Utilized lightGBM classifier trained on embeddings
- Similar trend on loss magnitudes

	Contrastive	Spearman	Mixed-10
Adware	0.917 ± 0.005	0.883 ± 0.005	0.917 ± 0.002
Crypto Miner	0.976 ± 0.004	0.962 ± 0.001	0.976 ± 0.003
Downloader	0.832 ± 0.007	0.798 ± 0.005	0.835 ± 0.004
Dropper	0.819 ± 0.009	0.773 ± 0.005	$\textbf{0.824} \pm \textbf{0.011}$
File Infector	0.878 ± 0.003	0.834 ± 0.005	0.885 ± 0.007
Flooder	0.982 ± 0.006	0.981 ± 0.003	0.979 ± 0.003
Installer	0.957 ± 0.003	0.929 ± 0.002	0.962 ± 0.002
Packed	0.783 ± 0.003	0.742 ± 0.004	0.779 ± 0.013
Ransomware	0.977 ± 0.003	0.959 ± 0.002	0.978 ± 0.003
Spyware	$\textbf{0.848} \pm \textbf{0.010}$	0.776 ± 0.003	0.846 ± 0.014
Worm	0.877 ± 0.014	0.804 ± 0.014	$\textbf{0.877} \pm \textbf{0.014}$

SOREL Semantic Tagging AU-ROCs

Comparison to SOREL-20M FFNN (multi-objective) (Semantic Tags)

• lightGBM transfer under-perform multiobjective network

Conclusions

Takeaways and Directions for Future Work

- Introduced two approaches to enriching metric embeddings with CAPA data: fine-grained (Spearman) and coarse (contrastive)
- Consistent with multi-objective literature, combining approaches and balancing loss magnitude improved performance
- Storage savings comparison
 - SOREL-20M Features ~172 GB; SOREL-20M embeddings ~2.1 GB
 - Allows for rapid iteration/testing in resource-constrained scenarios
- Could further improve performance by incorporating other label info
 - E.g., Malicious/Benign, Attribute Tags, ATT&CK Tactics, etc.
- Future work
 - resiliency of metric embedding approaches to concept drift
 - embeddings on other data -- beyond malware

Thank You