Playing Defense: Benchmarking Cybersecurity Capabilities of Large Language Models

Adarsh Kyadige Research Manager, Sophos Al

Co-authors:

Salma Taoufiq, Younghoo Lee, Tamas Voros, Konstantin Berlin

Sophos Al

Agenda

- Introduction
 - Background
 - Contenders for our Benchmarks
- Our proposed Benchmarks
 - Natural Language Interface for Threat Hunting / Investigation
 - Incident Summarization
 - Artifact / Incident Evaluation
 - Benchmark Results and Discussion
- Takeaways
- Appendix
 - Detailed Results
 - Other considerations
 - Cost
 - Context size

Background

Large Language Models

Figure 1: The Transformer - model architecture.

LLM Leaderboard

T 🔺	Model	A Average	ARC 🔺	HellaSwag ▲	MMLU 🔺	TruthfulQA	A
\rightarrow	AIDC-ai-business/Marcoroni-70B-v1	74.06	73.55	87.62	70.67	64.41	
•	ICBU-NPU/FashionGPT-70B-V1.1	74.05	71.76	88.2	70.99	65.26	
\rightarrow	adonlee/LLaMA_2_70B_LoRA 🖺	73.9	72.7	87.55	70.84	64.52	
•	uni-tianyan/Uni-TianYan	73.81	72.1	87.4	69.91	65.81	
\rightarrow	Riiid/sheep-duck-llama-2	73.69	72.35	87.78	70.82	63.8	
•	Riiid/sheep-duck-llama-2	73.67	72.27	87.78	70.81	63.8	
\rightarrow	fangloveskari/ORCA_LLaMA_70B_QLoRA	73.4	72.27	87.74	70.23	63.37	
\rightarrow	ICBU-NPU/FashionGPT-70B-V1	73.26	71.08	87.32	70.7	63.92	
\rightarrow	oh-yeontaek/llama-2-70B-LoRA-assemble-v2	73.22	71.84	86.89	69.37	64.79	
0	budecosystem/genz-70b	73.21	71.42	87.99	70.78	62.66	

The Main Contenders

Model Name	Size	Provider	Max. Context Window
GPT-4	1.76T?		8k or 32k
GPT-3.5-Turbo	175B?	Эророни	4k or 16k
Jurassic2-Ultra	?		8k
Jurassic2-Mid	?	Al21 labs	8k
Claude-Instant	?		100k
Claude-v2	?	ANTHROP\C	100k
Amazon-Titan-Large	45B	amazon	4k
MPT-30B-Instruct	30B	/∕∕∕ mosaic ^{ML}	8k
LlaMa2 (Chat-HF)	7B, 13B, 70B	∞ Meta	4k
CodeLlaMa	7B, 13B, 34B	Vivieta	4k

Security Benchmarks for LLMs

The Three Benchmarks

Threat Hunting and Investigation assistance

- Input: Schema information and Natural language query
- Output: SQL query retrieving requested information

Incident Summarization

- Input: Alerts and User Activity data
- Output: Summary of the suspicious events, including extraction of important artifacts such as command lines, files and usernames

Artifact / Incident Evaluation

- Input: Alerts and User Activity data
- Output: Verdict on how malicious the input activity is, on a scale of 5 severity levels

Natural Language Interface

Natural Language Interface for Threat Hunting and Investigation

```
### Translate the following request into SQL
### Schema for alert table table
<Table schema>
### Schema for process table table
<Table schema>
### Schema for network_table table
<Table schema>
###
Request:tell me a list of processes that were executed between 2021/10/19 and 2021/11/30
SQL:select * from process_table where timestamp between '2021-10-19' and '2021-11-30';
###
Request:show me any low severity security alerts for the 23 days ago
SQL:select * from alert table where severity='low' and timestamp>=DATEADD('day', -23, CURRENT TIMESTAMP());
###
Request:show me the count of msword.exe processes that ran between Dec/01 and Dec/11
SQL:select count(*) from process_table where process='msword.exe' and timestamp<='2022-12-11' and timestamp>='2022-12-01';
###
Request: "Any ubuntu processes that was run by the user ""admin"" from host ""db-server""
SQL:
```

NLI Benchmark results

- Measures:
 - Query match
 - Result set match
 - Query Equivalence with GPT-4
- Top 4:
 - GPT-4
 - CodeLlama-34B-Instruct
 - Claude-v2
 - Claude-Instant

Give me a harder problem!

```
###
Request:tell me a list of processes that were executed between 2021/10/19 and 2021/11/30
SQL:select * from process_table where timestamp between '2021-10-19' and '2021-11-30';
###
Request: show me any low severity security alerts for the 23 days ago
SQL:select * from alert table where severity='low' and timestamp>=DATEADD('day', -23, CURRENT TIMESTAMP());
###
Request:show me the count of msword.exe processes that ran between Dec/01 and Dec/11
SQL:select count(*) from process_table where process='msword.exe' and timestamp<='2022-12-11' and timestamp>='2022-12-01';
###
                                                                                  Request
Request:processes which were launched from the past 24 days
                                                                                                 Correct answer
SQL:select * from process_table where timestamp>DATEADD('day', -24, CURRENT TIMESTAMP());
###
Request: show me the top 3 most recently executed processes
SQL:select * from process_table order by timestamp desc limit 3;
###
### Request:show me the top 3 most recently seen hosts
SQL:select * from network table order by timestamp desc limit 3;
                                                                                               Extra requests and
###
Request: show me the count of processes that ran on the 23rd of December
                                                                                               SQL Translations!
SQL:select count(*) from process table where timestamp='20222-12-12-23';
###
Request:tell me the count of processes that ran on each day of the last week
SQL:select count(*) from process table where date(timestamp) in ( '200222-W01-1', '
```

Incident Summarization

Summary: <1-2 sentence description of what happened> Observed MITRE Techniques: <List of all the observed mitre attack techniques found in the list of detections with technique and tactid ID> Impacted Hosts: <List of all hostname observed in the detections, provide corresponding IPs if available> Active Users: <List of all usernames observed in the detections. There could be multiple, list all of them> Events: <One sentence description for top three detection events. Start the list with 1. > <Enumerate only up to ten artifacts under each report category, and summarize any remaining events beyond that.> Files: <List the files found in the incident as follows:> <TEMPLATE FOR FILES WITH DETAILS> Command lines: <List the command lines found in the detections as follows:> <TEMPLATE FOR COMMAND LINES WITH DETAILS>

Summary:

<1-2 sentence description of what happened>

Observed MITRE Techniques:

<List of all the observed mitre attack techniques found in the list of detections with technique and tactid ID>

Impacted Hosts:

<List of all hostname observed in the detections, provide corresponding IPs if available>

Active Users:

<List of all usernames observed in the detections. There could be multiple, list all of them>

Events:

<One sentence description for top three detection events. Start the list with 1. >
<Enumerate only up to ten artifacts under each report category, and summarize any remaining events beyond that.>

Files:

<List the files found in the incident as follows:>
<TEMPLATE FOR FILES WITH DETAILS>

Command lines:

<List the command lines found in the detections as follows:>
<TEMPLATE FOR COMMAND LINES WITH DETAILS>

Summary:

<1-2 sentence description of what happened>

Observed MITRE Techniques:

<List of all the observed mitre attack techniques found in the list of detections with technique and tactid ID>

Impacted Hosts:

<List of all hostname observed in the detections, provide corresponding IPs if available>

Active Users:

<List of all usernames observed in the detections. There could be multiple, list all of them>

Events:

<One sentence description for top three detection events. Start the list with 1. >
<Enumerate only up to ten artifacts under each report category, and summarize any remaining events beyond that.>

Files:

<List the files found in the incident as follows:>
<TEMPLATE FOR FILES WITH DETAILS>

Command lines:

<List the command lines found in the detections as follows:>
<TEMPLATE FOR COMMAND LINES WITH DETAILS>

Summary: <1-2 sentence description of what happened> Observed MITRE Techniques: <List of all the observed mitre attack techniques found in the list of detections with technique and tactid ID> Impacted Hosts: <List of all hostname observed in the detections, provide corresponding IPs if available> Active Users: <List of all usernames observed in the detections. There could be multiple, list all of them> Events: <One sentence description for top three detection events. Start the list with 1. > <Enumerate only up to ten artifacts under each report category, and summarize any remaining events beyond that.> Files: <List the files found in the incident as follows:> <TEMPLATE FOR FILES WITH DETAILS> Command lines: <List the command lines found in the detections as follows:> <TEMPLATE FOR COMMAND LINES WITH DETAILS>

Summary: <1-2 sentence description of what happened> Observed MITRE Techniques: <List of all the observed mitre attack techniques found in the list of detections with technique and tactid ID> Impacted Hosts: <List of all hostname observed in the detections, provide corresponding IPs if available> Active Users: <List of all usernames observed in the detections. There could be multiple, list all of them>

Events:

<0ne sentence description for top three detection events. Start the list with 1. >
<Enumerate only up to ten artifacts under each report category, and summarize any remaining events beyond that.>

Files:

<List the files found in the incident as follows:>
<TEMPLATE FOR FILES WITH DETAILS>

Command lines:

<List the command lines found in the detections as follows:>
<TEMPLATE FOR COMMAND LINES WITH DETAILS>

Command lines:

<List the command lines found in the detections as follows:>

<TEMPLATE FOR COMMAND LINES WITH DETAILS>

```
Summary:
    <1-2 sentence description of what happened>
Observed MITRE Techniques:
    <List of all the observed mitre attack techniques found in the list of detections with technique and tactid ID>
Impacted Hosts:
    <List of all hostname observed in the detections, provide corresponding IPs if available>
Active Users:
    <List of all usernames observed in the detections. There could be multiple, list all of them>
Events:
    <One sentence description for top three detection events. Start the list with 1. >
    <Fnumerate only up to ten artifacts under each report category and summarize any remaining events beyond that s</pre>
Files:
   <List the files found in the incident as follows:>
   <TEMPLATE FOR FILES WITH DETAILS>
```

Incident Summarization Results

Incident Summarization Results

Incident Summary Comparison - GPT4

Summary:

The customer experienced multiple static exploit file detections, a brute force attempt, and an account lockout.

Observed MITRE Techiniques:

- TA0002: Execution
 - T1059: Command and Scripting Interpreter

Summary:

Multiple instances of suspicious activity were detected, including an attempt at a brute force attack on user accounts and suspicious files detected on the system, signaling a potential breach.

Observed MITRE Techniques:

- TA0002: Execution
- T1059: Command and Scripting Interpreter

Incident Summary Comparison – LLama-70B

Summary:

The customer experienced multiple static exploit file detections, a brute force attempt, and an account lockout.

Observed MITRE Techiniques:

- TA0002: Execution
 - T1059: Command and Scripting Interpreter

Summary:

An attacker was detected attempting to brute-force attack a Windows account using invalid login credentials. Additionally, a suspicious file was detected on the system, which may indicate further malicious activity.

Observed MITRE Techniques:

- * TA0002 Execution
- * T1059 Command and Scripting Interpreter

Incident Summary Comparison – J2-Ultra

Summary:

The customer experienced multiple static exploit file detections, a brute force attempt, and an account lockout.

Observed MITRE Techiniques:

- TA0002: Execution
 - T1059: Command and Scripting Interpreter

Summary:

A user account was locked out, a brute force attack was detected, and static exploit files were detected.

Observed MITRE Techniques:

- Execution: Command and Scripting Interpreter (T1059)
- Execution: Command and Scripting Interpreter (T1059)
- 3. Execution: Command and Scripting Interpreter (T1059)

Incident Summary Comparison – MPT-30B-Instruct

Summary:

The customer experienced multiple static exploit file detections, a brute force attempt, and an account lockout.

Observed MITRE Techiniques:

- TA0002: Execution
 - T1059: Command and Scripting Interpreter

A user account was locked out from the machine, with the source IP shuffling through 20 or more different usernames, indicating a brute force attack. In addition, multiple exploit files were detected on the endpoint from downloads, including: Exp/JPGIFD-A, Exp/Datbi-A, Troj/SW F-CW, and two additional exploits."

Incident Summary Comparison – CodeLlama-34B-Instruct

Summary:

The customer experienced multiple static exploit file detections, a brute force attempt, and an account lockout.

Observed MITRE Techiniques:

- TA0002: Execution
 - T1059: Command and Scripting Interpreter

<Regurgitates Detection Data>

Artifact / Incident Evaluation

Artifact/Incident Evaluation

Detections:

```
You are a helpful cybersecurity incident investigation expert that classifies incidents according to their severity level given a set of detections per incident.

Respond strictly with this JSON format: {"severity_pred": "xxx"} where xxx should only be either:

- Critical,

- Criteria for a critical incident>

- High,

- Criteria for a high severity incident>

- Medium,

- Criteria for a medium severity incident>

- Low,

- Criteria for a low severity incident>

- Informational

- Criteria for an informational incident>

No other value is allowed.
```

Artifact/Incident Evaluation Results

What we said

```
Respond strictly with this JSON format: {"severity_pred": "xxx"} No other value is allowed.

### Do not respond with anything but the specified format
```

What the models did

Putting it all together

Takeaways

Want a Threat Hunting assistant? You've got one right now!

A little bit of prompt engineering will probably get you there

Want a model that summarizes unstructured data for quick review?

Fine-tuning one of the better performers on this benchmark might yield a usable model.

Want a model that can tell you if something bad is happening?

There is no good model for this right now. A good intermediate solution is to use embeddings learned by the models.

Appendix

Artifact/Incident evaluation – confusion matrices

Other important considerations

Inference Costs

(Useful) Context size

Natural Language Interface – Detailed results

Model	Rank	Accuracy
GPT-4	1	0.88
Claude-Instant	2	0.85
Claude-v2	2	0.85
CodeLlama-34B-Instruct	2	0.85
GPT-3.5-Turbo	5	0.84
Llama-2-70B-Chat	6	0.83
MPT-30B-Instruct	7	0.77
CodeLlama-7B-Instruct	8	0.75
CodeLlama-13B-Instruct	8	0.75
Jurassic-2-Ultra	10	0.72
Jurassic-2-Mid	11	0.57
Llama-2-13B-Chat	12	0.53
Amazon-Titan-Large	13	0.52
Llama-2-7B-Chat	14	0.39

Summarization— Detailed results

Model	del Factual Accuracy		BERTScore (F1)	Cosine Similarity	METEOR score
	LCS-based	Levenshtein-based			
GPT-4	0.7646	0.8162	0.932	0.9696	0.6955
Claude v2	0.6336	0.7235	0.8514	0.9238	0.3222
Claude Instant v1	0.5503	0.6488	0.8404	0.9126	0.282
J2-Ultra	0.527	0.6309	0.8359	0.9133	0.2765
J2-Mid	0.2862	0.3707	0.8088	0.8774	0.1934
LLaMA2 7B Chat HF	0.2229	0.3974	0.7782	0.8485	0.1749
LLaMA2 13B Chat HF	0.3786	0.5602	0.8214	0.8705	0.2363
LLaMA2 70B Chat HF	0.4739	0.6547	0.826	0.8847	0.2434
CodeLLaMA 7B Instruct	0.1189	0.2194	0.7652	0.8083	0.1039
CodeLLaMA 13B Instruct	0.3128	0.4962	0.7988	0.8488	0.1952
CodeLLaMA 34B Instruct	0.252	0.3746	0.7917	0.8245	0.164
MPT30B Instruct	0.2594	0.3783	0.8178	0.8702	0.1315
Amazon Titan Large	0.4642	0.5904	0.8418	0.9045	0.2181
GPT 3.5 Turbo	0.5586	0.6808	0.8624	0.9323	0.3376

Artifact Evaluation – Detailed results (Zero shot)

Model	Accuracy	Balanced Accuracy	Per-class F1 score (Critical to Informational)
GPT-4	0.04	0.2537	[0.0245, 0.0478, 0.108, 0, 0]
GPT-3.5-Turbo	0.26	0.2336	[0.051, 0.873, 0.373, 0.270, 0.0076]
Claude-v2	0.2	0.2614	[0.035, 0.104, 0.33, 0.202, 0]
Claude-Instant-v1	0.07	0.2094	[0.013, 0.082, 0.218, 0.004, 0]
J2-Ultra	0.49	0.2083	[0.043, 0, 0, 0.66 , 0.038]
J2-Mid	0.19	0.1786	[0, 0, 0.307, 0, 0.221]
Amazon-Titan-Large	0.007	0.2001	[0.012, 0, 0, 0.002, 0]
Llama-2-7B-Chat	0.001	0.063	[0, 0, 0.267, 0.118, 0]
Llama-2-13B-Chat	0.001	0.13	[0, 0, 0, 0.67, 0]
Llama-2-70B-Chat	0.008	0.05	[0, 0.048, 0.112, 0.116, 0.283]
CodeLlama-7B-Chat	0.02	0.129	[0, 0.078, 0.118, 0.321, 0.057]
CodeLlama-13B-Chat	0.003	0.128	[0, 0.2, 0.23, 0.098, 0.077]
CodeLlama-34B-Chat	0.016	0.046	[0, 0, 0.075, 0.28, 0.28]

Artifact Evaluation – Detailed Results

Model	Experiment	Accuracy	Balanced Accuracy	Per-class F1 score (Critical to Informational)
GPT-4	3-Shot with distinct severities (case-creating IOC)	0.14	0.2827	[0.035, 0.070, 0.312, 0.069, 0]
GPT-3.5-Turbo	3-Shot with distinct severities (case-creating IOC)	0.21	0.2403	[0.04, 0.08, 0.32, 0.258, 0.004]
Claude-v2	3-Shot with distinct severities (case-creating IOC)	0.28	0.249	[0.038, 0.95 , 0.332, 0.38, 0.07]
XGBoost	GPT-3 embeddings of case-creating IOC	0.49	0.2651	[0.069, 0.014, 0.40, 0.614, 0.23]
XGBoost	Amazon Embedding G1 embeddings of case-creating IOC	0.46	0.2646	[0.066, 0.0625, 0.452, 0.56, 0.16]
XGBoost	BGE-Large embeddings of case-creating IOC	0.46	0.2518	[0.064, 0.022, 0.407, 0.603, 0.126]
XGBoost	GPT-3 embeddings of multiple IOCs	0.48	0.2614	[0.077 , 0.058, 0.367, 0.624, 0.205]
XGBoost	2 features: Incident-creating IOC's severity and its type	0.2436	0.2305	[0.003, 0.0914, 0.3495, 0.23, 0.36]