Multi-Agent Reinforcement Learning for
Maritime Operational Technology Cyber Security
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Context Setting: Maritime, Vessels and OT

* Vessels are complex systems-of-systems inclusive of
Information Technology (IT) and Operational Technology (OT)

infrastructures.

+ OT systems are vulnerable to cyber-attacks as traditional IT
cyber security controls may either not be available or may not

be able to prevent attacks.

* OT cyber defensive actions are less mature than for

Enterprise IT.

* Cyber security skills and SMEs might not be readily available

during vessels’ missions and operational activities.
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Context Setting: IPMS

* Integrated Platform Management System (IPMS) representation consists of:
— An abstraction of a bridge (a set of HMIs).
— AChilled Water Plant system.

— Arepresentation of a ships Propulsion system.

* While the scenario is a high-level abstraction of a real scenario, its design is grounded in reality and
exhibits several features which are intended to reflect real challenges when developing agents capable

of autonomous cyber responses.
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IPMSRL Environment

I Interconnected | Serial LAN | Modbus

Abbreviations: CWP = Chilled Water Plant
HMI = Human Machine Interface
LAN = Local Area Network
LOP = Local Operator Panel
PCS = Propulsion Control System
RTU = Remote Terminal Unit

IPMSRL — network-based environment where nodes represent the

different components within an IPMS.

* The nodes are sub-divided into infectable nodes (e.g. RTUs) and

critical nodes (e.g. CWPs). :

— Infectable nodes are nodes in the network that the attacker can
spread through and have 12 infection levels based on the MITRE

ATT&CK framework.
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IPMSRL Attacker

* An attacker’s virality can be configured on a sliding scale from fully targeted to fully viral:
— Fully targeted - Attackers will always seek to move directly towards critical infrastructure.

— Fully viral - Attackers will move randomly to any adjacent node.

* An attacker’s behaviour is also informed by the following parameters:
— Lateral Movement Probability - The probability that a lateral movement is successful.

— Infection Progress Probability - The probability that the infection on any given infected node will progress

to a later stage in the MITRE ATT&CK framework. m
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IPMSRL Attacker Visualisation

* The IPMS quickly becomes overrun, and the propulsion S 7
system is taken offline, resulting in a mission failure.
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IPMSRL Defender

» Defenders have a restricted view and initially can only see alerts from nodes.

» Defenders collect infection progress information for each infectable node they interact with. This

knowledge cannot be shared and is static in nature.

* The actions available to a defender are:

Contain - Prevents the infection moving laterally from the node;
Eradicate - Removing an infection from the node;
Recover - Puts the node back into operational mode;

Wait - This is a null action that does not result in any change to the environment.
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Trained Demo - Walkthrough - ‘
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IPPO vs MAPPO

* We tested Independent PPO (IPPO - independent critics) against multi-
agent PPO (MAPPO - single centralised critic).

* MAPPO outperformed IPPO, with all hyperparameters kept constant,

showing the benefit of a centralised critic in this instance.

* A centralised critic allows all agents to value the current environment in

the same way, leading to faster collaborative efforts.

» Without the centralised critic, each agent must learn a suitable value

function independently which results in a slower training process.
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Default vs Tuned Hyperparameters

Tuning hyperparameters was found to be
highly important - tuned parameters (blue)

vs default PPO parameters (orange)

We tuned 11 hyperparameters in total:

» 3 general RL parameters (train batch size,
learning rate, gamma (discount factor).

» 8 PPO parameters (lambda (GAE), KL
coefficient, VF clip parameter, SGD
minibatch size, num SGD iterations, VF loss

coeff, entropy coeff and clip parameter
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Reward Shaping

State Reward vs Balanced Reward

+ We found that ‘shaping’ the reward function had an

—— Balanced reward —— Balanced reward

impact on the agent finding optimal policies. — State reward //-/—' 50 — State reward

+ If the agent was only rewarded on the state of the

environment (state reward, orange), there was no
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Impact of Partial Observability

We experimented with making the environment partially observable by adjusting the alert success probability.
We found that after 1m training steps, an agent with only 75% observability could still almost perfectly solve the environment, but

that performance dramatically decreased when observability was reduced to 50% and 25%.
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Thank You.
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