

Razing to the Ground Machine-Learning Phishing Webpage Detectors with Query-Efficient Adversarial HTML Attacks

<u>Biagio Montaruli</u>^{1,2}, Luca Demetrio^{4,5}, Maura Pintor^{3,5}, Luca Compagna¹, Davide Balzarotti², Battista Biggio^{3,5} ¹SAP Security Research, ²EURECOM, ³University of Cagliari, ⁴University of Genova, ⁵Pluribus One

whoami

- Al Security researcher @ SAP Security Research
- Ph.D. candidate @ EURECOM
- Involved in the TESTABLE EU project
 - isingio.montaruli@sap.com

 biagio.montaruli@eurecom.fr

 isingio.montaruli@eurecom.fr

 isingio.montaruli@eurecom.fr

 biagio.montaruli@eurecom.fr

 biagio.montaruli@eurecom.fr

 biagio.montaruli@eurecom.fr

 biagio.montaruli@eurecom.fr

 biagio.montaruli@eurecom.fr

Motivations and main takeaways

Phishing is a major attack vector to steal sentitive data from users

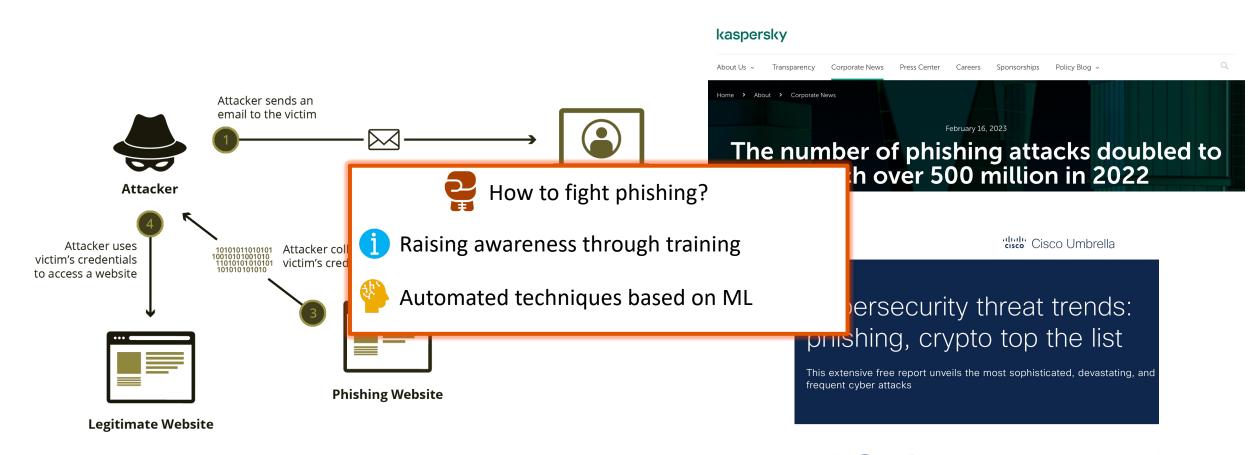
- Phishing attacks increased in 2023 by 102% quarter-over-quarter (QoQ)
- ML solutions are widely used to automate detection

V vade

QI 2023 Phishing and Malware Report: Phishing Increases 102% QoQ

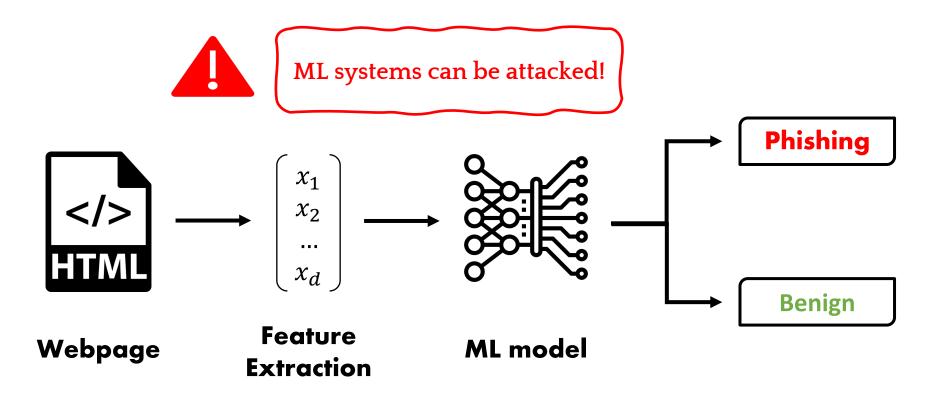
Todd Stansfield — April 13, 2023 — 4 min read

Current adversarial attacks against ML-based phishing webpage detectors (ML-PWD) are "cheap"


- They adopt "cheap" manipulations that do not fully leverage domain knowledge
- What if the attacker is able to optimize the adversarial attacks using just the model output?

Towards a much fairer robustness evaluation of ML-PWD

- We designed **14 novel adversarial manipulations** to evade some HTML features broadly used in the literature
- We proposed a new query-efficient black-box optimization algorithm tailored on such manipulations
- We managed to raze to the ground 6 state-of-the-art ML-PWD using just 30 queries


Phishing – An overview

more queries than all other threat types

Machine Learning for anti-phishing

Querying strategies that reveal confidential information on the

learning model or its users

Attacks against ML systems

Attacker's Goal

Misclassifications that do

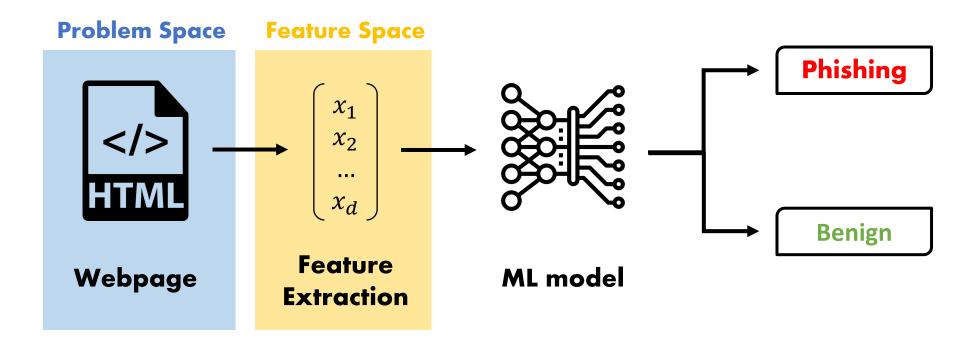
not compromise normal

system operation

Attacker's Capability		Integrity	Availability	Privacy / Confidentiality
	Test data	Evasion (a.k.a. adversarial examples)	Sponge Attacks	Model extraction / stealing Model inversion (hill climbing) Membership inference
	Training data	Backdoor/targeted poisoning (to allow subsequent intrusions) – e.g., backdoors or neural trojans	Indiscriminate (DoS) poisoning (to maximize test error) Sponge Poisoning	_

Misclassifications that

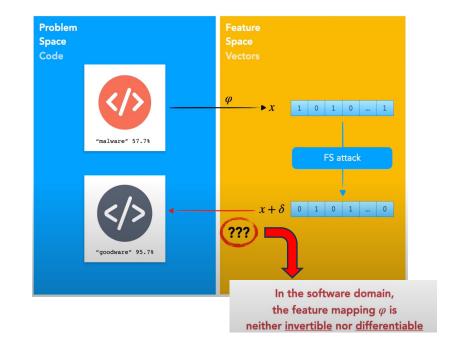
compromise normal


system operation

Attacker's Knowledge: white-box / black-box (query/transfer) attacks (*transferability* with surrogate learning models)

Attack spaces of ML systems for anti-phishing

Problem-space adversarial attacks

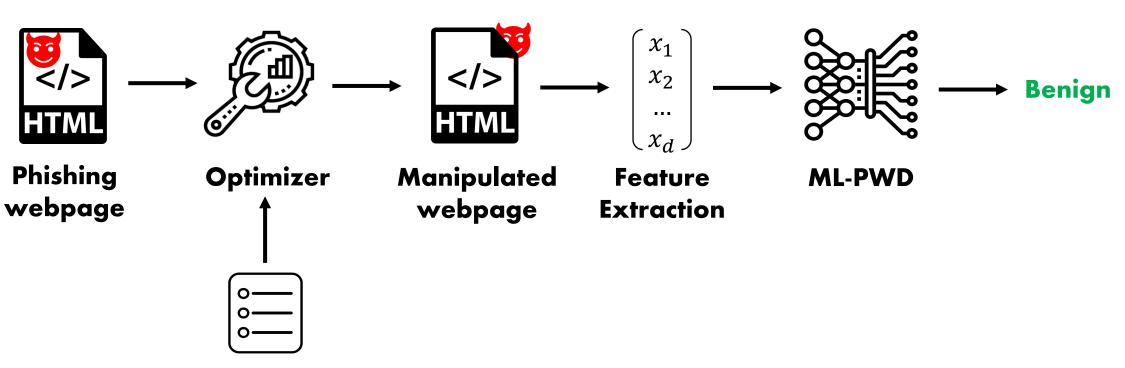

Why focusing on problem-space attacks when testing ML-based cybersecurity systems?

- 1. Threat model based on a black-box scenario: ML model and training data are not available
- 2. The target ML model may not be differentiable
 - Gradient-based techniques cannot be applied
- 3. Inverse feature-mapping problem

How to generate problem-space adversarial attacks?

Physically-realizable manipulations:

- 1) Satisfy physical constraints (i.e., format, executability)
- Preserve the original functionality/semantic


SAP Security Research

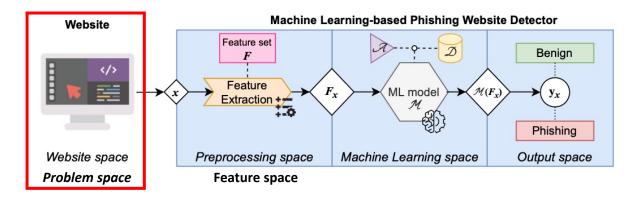
Adversarial Machine Learning for anti-anti-phishing

Manipulations

State-of-the-art: SpacePhish

3 Evasion spaces:

- 1. Website
 - black-box (WA)
 - gray-box (\widehat{WA})
- 2. Preprocessing (PA)
- 3. ML model (*MA*)

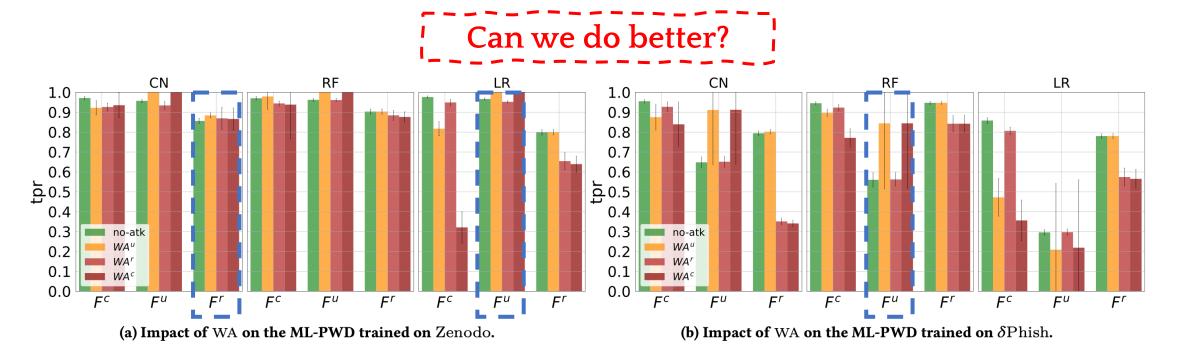

3 ML models:

- Convolutional Neural Network (CNN)
- Logistic Regression (LR)
- Random Forest (RF)

3 Features groups:

• URL (F^u , 35 features)

- HTML (F^r , 22 features)
- Combined ($F^c = F^u \cup F^r$, 57 features)


#	Feature Name	#	Feature Name	#	Feature Name
1	URL length	20	URL shrtWordPath	39	HTML commPage
2	URL_hasIPaddr	21	URL_IngWordURL	40	HTML_commPageFoot
3	URL_redirect	22	URL_DNS	41	HTML_SFH
4	URL_short	23	URL_domAge	42	HTML_popUp
5	URL_subdomains	24	URL_abnormal	43	HTML_rightClick
6	URL_atSymbol	25	URL_ports	44	HTML_domCopyright
7	URL_fakeHTTPS	26	URL_SSL	45	HTML_nullLnkWeb
8	URL_dash	27	URL_statisticRe	46	HTML_nullLnkFooter
9	URL_dataURI	28	URL_pageRank	47	HTML_brokenLnk
10	URL_commonTerms	29	URL_regLen	48	HTML_loginForm
11	URL_numerical	30	URL_checkGI	49	HTML_hiddenDiv
12	URL_pathExtend	31	URL_avgWordPath	50	HTML_hiddenButton
13	URL_punyCode	32	URL_avgWordHost	51	HTML_hiddenInput
14	URL_sensitiveWrd	33	URL_avgWordURL	52	HTML_URLBrand
15	URL_TLDinPath	34	URL_lngWordPath	53	HTML_iframe
16	URL_TLDinSub	35	URL_lngWordHost	54	HTML_favicon
17	URL_totalWords	36	HTML_freqDom	55	HTML_statBar
18	URL_shrtWordURL	37	HTML_objectRatio	56	HTML_css
19	URL_shrtWordHost	38	HTML_metaScripts	57	HTML_anchors

SpacePhish - Limitations

- 1) They focus on "cheap" manipulations that do not fully leverage the domain knowledge
- 2) Attacks are not optimized

The proposed manipulations are

not so effective

TESTABLE

Proposed methodology

We propose 14 novel functionality- and rendering-preserving HTML adversarial manipulations

Manipulation	Evaded feature(s)	Туре	Manipulation	Evaded feature(s)	Туре
InjectIntElem*	HTML_freqDom, HTML_objectRatio, HTML_commPage, HTML_nullLnkWeb (int. links)	MR	InjectFakeCopyright	HTML_domCopyright	SR
InjectIntElemFoot*	HTML_commPageFoot, HTML_nullLnkFooter (int. links)	MR	UpdateIntAnchors	HTML_anchors (int. links), HTML_nullLnkWeb (useless links), HTML_nullLnkFooter (useless links)	SR
InjectIntLinkElem	HTML_metaScripts	MR	UpdateHiddenDivs	HTML_hiddenDiv	SR
InjectExtElem	HTML_freqDom, HTML_objectRatio, HTML_metaScripts, HTML_commPage	MR	UpdateHiddenButtons	HTML_hiddenButton	SR
InjectExtElemFoot	HTML_commPageFoot	MR	UpdateHiddenInputs	HTML_hiddenInput	SR
UpdateForm	HTML_SFH (int. links), HTML_loginForm (int. links)	SR	UpdateTitle	HTML_URLBrand	SR
ObfuscateExtLinks	HTML_SHF (ext. links), HTML_brokenLnk, HTML_anchors (ext. links), HTML_css, HTML_favicon (ext. links), HTML_loginForm (ext. links)	SR	UpdateIFrames	HTML_iFrame	SR
ObfuscateJS	HTML_statBar, HTML_rightClick, HTML_popUP	SR	InjectFakeFavicon	HTML_favicon (no favicon included)	SR

We design a new **query-efficient black-box optimizer** inspired to mutation-based fuzzing

Algorithm 1: Black-box optimizer to generate adversarial phishing webpages.
Data: z , the initial phishing sample;
f, the machine-learning phishing webpage detector;
h, the function to mutate the phishing webpages;
R, the number of mutation rounds;
SR the set of single-round (SR) manipulations;
MR the set of multi-round (MR) manipulations.
Result: z^* , the adversarial phishing sample.
1 $\boldsymbol{z}^{\star} = \boldsymbol{z}$
2 s $^{\star}=f(\boldsymbol{z}^{\star})$
3 for t in SR
4 $oldsymbol{z}'=h(oldsymbol{z}^{\star},t)$
5 s' $= f(oldsymbol{z}')$
$6 \qquad \text{if } \mathbf{s}' < \mathbf{s}^{\star}$
7 $\mathbf{s}^{\star} = \mathbf{s}'$
8 $z^{\star}=z^{\prime}$
9 for r in [1, R]
10 $C = \emptyset$
11 for t in MR
12 $oldsymbol{z}'=h(oldsymbol{z}^{\star},t)$
13 $\mathbf{s}' = f(oldsymbol{z}')$
14 $C = C \cup \{(\boldsymbol{z}', \mathbf{s}')\}$
15 z^b , $s^b = get_best_candidate(C)$
16 if $s^b < s^{\star}$
17 $\mathbf{s}^{\star} = \mathbf{s}^{b}$
18 $oldsymbol{z}^\star = oldsymbol{z}^b$
19 return z [*]

TESTABLE

ObfuscateExtLinks – Obfuscation of malicious forms

ObfuscateExtLinks can be used to bypass the *HTML_SHF* feature, which checks for suspicious HTML forms

 $HTML_SFH = \begin{cases} -1 & \text{if } n_susp < 0.5 \text{ (benign)} \\ 0 & \text{if } n_susp \in [0.5, 0.75] \text{ (susp.)} \\ +1 & \text{if } ratio > 0.75 \text{ (phishing)} \end{cases}$

1	html
2	<html></html>
3	<head></head>
4	<title>Login</title>
5	
6	<body></body>
7	<pre><form action="http://malicious.io" id="myform"></form></pre>
8	<label for="pwd">Enter your password: </label>
9	<input name="pass" required="" type="password"/>
10	
11	
12	

A form is considered suspicious if:

- includes an external link
- the action attribute is set to about:blank: it points to a blank webpage

1	html
2	<html></html>
3	<head></head>
4	<title>Login</title>
5	< script type ="text/javascript">
6	window.onload = function () {
7	<pre>document.getElementById("myform").setAttribute</pre>
	("action", "http://malicious.io");
8	}
9	
10	
11	<body></body>
12	<form action="#!" id="myform"></form>
13	<label for="pwd">Enter your password: </label>
14	<input name="passwd" required="" type="password"/>
15	
16	
17	

UpdateHiddenDivs - Obfuscation of hidden <div>

UpdateHiddenDivs can be used to evade the HTML_hiddenDiv feature, which checks if there are <div> elements hidden by setting the style attribute to visibility:hidden or display:none

<div> hidden using display:none

- 1) Remove display:none from the inline CSS style
- 2) Obfuscate it using the hidden attribute

```
<! DOCTYPE html>
   <html>
   <head>
   <title>Home</title>
   </head>
    <bodv>
 6
     <div id="div1" style="display: none">
 7
 8
       Text in the first div.
     </div>
 9
10
     <div id="div2" style="visibility: hidden">
11
12
       Text in the second div.
13
     </div>
   </body>
14
15
    </html>
```

<div> hidden using visibility: hidden

- 1) Remove visibility:hidden from the inline CSS style
- 2) Obfuscate it using a new <style> object

html	
<html></html>	
<head></head>	
<title>Home</title>	
<style></th><th></th></tr><tr><th><pre>#div2 {visibility: hidden;}</pre></th><th></th></tr><tr><th></style>	
< <u>body></u>	
< div id ="div1" hidden>	
Text in the first div.	
<div id="div2"></div>	
Text in the second div.	

Black-box optimizer

Algorithm 1: Black-box optimizer to generate adversarial phishing webpages.
Data: z , the initial phishing sample;
f, the machine-learning phishing webpage detector;
h, the function to mutate the phishing webpages;
R, the number of mutation rounds;
SR the set of single-round (SR) manipulations;
MR the set of multi-round (MR) manipulations.
Result: z^* , the adversarial phishing sample.
1 $\boldsymbol{z}^{\star} = \boldsymbol{z}$
2 s $^\star=f(oldsymbol{z}^\star)$
s for t in SR
4 $oldsymbol{z}'=h(oldsymbol{z}^{\star},t)$
5 s' $= f(oldsymbol{z}')$
$\mathbf{if} \ \mathbf{s}' < \mathbf{s}^{\star}$
7 $\mathbf{s}^{\star} = \mathbf{s}'$
8 $\boldsymbol{z}^{\star}=\boldsymbol{z}'$
9 for r in $[1, R]$
10 $C = \emptyset$
11 for t in MR
12 $oldsymbol{z}'=h(oldsymbol{z}^{\star},t)$
13 $\mathbf{s}' = f(\boldsymbol{z}')$
14 $C = C \cup \{(\boldsymbol{z}', \mathbf{s}')\}$
15 $\boldsymbol{z}^{b}, \mathbf{s}^{b} = get_best_candidate(C)$
16 if $s^b < s^*$
17 $\mathbf{s}^{\star} = \mathbf{s}^{b}$
18 $oldsymbol{z}^{\star}=oldsymbol{z}^{b}$
19 return z*

Black-box optimizer

	Algorithm 1: Black-box optimizer to generate adversarial phishing webpages
	Data: z , the initial phishing sample;
	f, the machine-learning phishing webpage detector;
	h, the function to mutate the phishing webpages;
Initialization phase:	R, the number of mutation rounds;
Initialize the best adversarial example and score	SR the set of single-round (SR) manipulations;
with the initial phishing sample and its score	MR the set of multi-round (MR) manipulations.
	Result: z^* , the adversarial phishing sample.
	1 $z^{\star} = z$
	$rac{}{}$ 2 s [*] = f(z [*])
	3 for t in SR
	4 $oldsymbol{z}'=h(oldsymbol{z}^{\star},t)$
	$\mathbf{s} \mathbf{s}' = f(\boldsymbol{z}')$
	6 if $s' < s^*$
	$s^{\star} = s'$
	8 $z^{\star}=z'$
	9 for r in $[1, R]$
	10 $C = \emptyset$
	11 for t in MR
	12 $\mathbf{z}' = h(\mathbf{z}^{\star}, t)$
	13 $\mathbf{s}' = f(\mathbf{z}')$
	14 $C = C \cup \{(z', s')\}$
	15 z^b , $s^b = get_best_candidate(C)$
	$\begin{array}{ll} \mathbf{if} & \mathbf{s}^{b} < \mathbf{s}^{\star} \end{array}$
	$17 s^* = s^b$
	$\begin{array}{ccc} 1 & 3 & \mathbf{z}^{\star} = \mathbf{z}^{b} \\ 18 & \mathbf{z}^{\star} = \mathbf{z}^{b} \end{array}$
	10 $z^* = z^*$ 19 return z^*
	17 IVUIII #

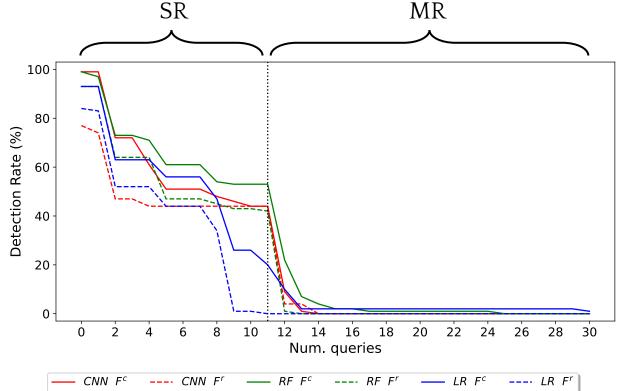
Black-box optimizer

	Algorithm 1: Black-box optimizer to generate adversarial phishing webpages.
	Data: z , the initial phishing sample;
	f, the machine-learning phishing webpage detector;
	h, the function to mutate the phishing webpages;
	R, the number of mutation rounds;
	SR the set of single-round (SR) manipulations;
	MR the set of multi-round (MR) manipulations.
	Result: z^* , the adversarial phishing sample.
	1 $\boldsymbol{z}^{\star} = \boldsymbol{z}$
Single-Round (SR) phase:	2 s $^{\star}=f(\boldsymbol{z}^{\star})$
 Try sequentially each SR manipulation 	3 for t in SR
 If it reduces the best score found so far, 	4 $oldsymbol{z}'=h(oldsymbol{z}^{\star},t)$
update the best adversarial example	\mathbf{s} $\mathbf{s}' = f(\boldsymbol{z}')$
	$\stackrel{\frown}{} 6 \qquad \mathbf{if} \ \mathbf{s}' < \mathbf{s}^{\star}$
	7 $\mathbf{s}^{\star} = \mathbf{s}'$
	$s \qquad z^{\star} = z'$
	9 for r in $[1, R]$
	10 $C = \emptyset$
	11 for t in MR
	12 $\mathbf{z}' = h(\mathbf{z}^{\star}, t)$
	13 $\mathbf{s}' = f(\mathbf{z}')$
	14 $C = C \cup \{(\boldsymbol{z}', \boldsymbol{s}')\}$
	15 $z^b, s^b = get_best_candidate(C)$
	16 if $s^b < s^*$
	17 $\mathbf{s}^{\star} = \mathbf{s}^{b}$
	18 $z^{\star} = z^b$
	19 return z*

ESTABLI

Black-box optimizer

	Algorithm 1: Black-box optimizer to generate adversarial phishing webpages.
	Data: <i>z</i> , the initial phishing sample;
	f, the machine-learning phishing webpage detector;
	h, the function to mutate the phishing webpages;
	R, the number of mutation rounds;
	SR the set of single-round (SR) manipulations;
	MR the set of multi-round (MR) manipulations.
	Result: z^* , the adversarial phishing sample.
	1 $z^* = z$
	$\begin{array}{l} \mathbf{z} & -\mathbf{z} \\ \mathbf{z} & \mathbf{s}^{\star} = f(\mathbf{z}^{\star}) \end{array}$
	2 s = f(z) 3 for t in SR
	4 $\mathbf{z}' = h(\mathbf{z}^{\star}, t)$
	z = n(z, t) s = f(z')
	s = f(z) 6 if $s' < s^*$
Multi-Round (MR) phase:	r = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
Try sequentially each MR manipulation to	$\begin{array}{c} \mathbf{z} \\ \mathbf{z} \\ \mathbf{z} \\ \mathbf{z}' \\ \mathbf{z}' \end{array}$
generate new candidates	9 for r in $[1, R]$
Get the best candidate (with lowest score)	$\begin{array}{c} 10 C = \emptyset \end{array}$
• If such a candidate reduces the best score, it	11 for t in MR
becomes the new best adversarial example	12 $\mathbf{z}' = h(\mathbf{z}^{\star}, t)$
	12 $z = h(z, v)$ 13 $s' = f(z')$
	13 $S = f(z)$ 14 $C = C \cup \{(z', s')\}$
	15 $z^b, s^b = get_best_candidate(C)$
	$\begin{array}{ll} 15 & 2 \ , \ 5 \ - \ get_best_cuntatuate(C) \\ 16 & \mathbf{if} \ \mathbf{s}^b < \mathbf{s}^\star \end{array}$
	$10 11 S < S S 17 S^* = S^b$
	$\frac{18}{19 \text{ return } z^*} = z^0$


Black-box optimizer

	Algorithm 1: Black-box optimizer to generate adversarial phishing webpages.		
	Data: <i>z</i> , the initial phishing sample;		
	f, the machine-learning phishing webpage detector;		
	h, the function to mutate the phishing webpages;		
	R, the number of mutation rounds;		
	SR the set of single-round (SR) manipulations;		
	MR the set of multi-round (MR) manipulations.		
	Result: z^* , the adversarial phishing sample.		
	$1 \ \boldsymbol{z}^{\star} = \boldsymbol{z}$		
	2 s $^{\star} = f(\boldsymbol{z}^{\star})$		
	3 for t in SR		
	4 $oldsymbol{z}'=h(oldsymbol{z}^{\star},t)$		
	$\mathbf{s} \mathbf{s}' = f(\mathbf{z}')$		
	6 if $s' < s^*$		
	7 $\mathbf{s}^{\star} = \mathbf{s}'$		
	8 $z^{\star}=z'$		
	9 for r in $[1, R]$		
	10 $C = \emptyset$		
	11 for t in MR		
	12 $oldsymbol{z}'=h(oldsymbol{z}^{\star},t)$		
	13 $\mathbf{s}' = f(\mathbf{z}')$		
	14 $C = C \cup \{(z', s')\}$		
	15 $\mathbf{z}^b, \mathbf{s}^b = get_best_candidate(C)$		
Final phase:	16 if $s^b < s^*$		
Return the best adversarial phishing example	17 $\mathbf{s}^{\star} = \mathbf{s}^{b}$		
	18 $oldsymbol{z}^{\star}=oldsymbol{z}^{b}$		
	19 return z^*		

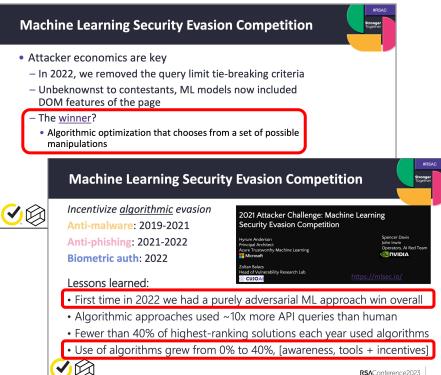
Razing to the ground the ML-PWD

SAP Security **Research**

Main results

- 1. The proposed attacks raze to the ground all the ML-PWD
 - Only 14 queries for the ML-PWD trained on the HTML features (F^r)
 - In 30 queries the ML-PWD trained on the whole feature set are able to completely evade all the ML-PWD
- 2. <u>HTML features matter</u>
 - While targeting only the HTML features, the manipulations are very effective in evading the ML-PWD trained on F^c
 - The adversarial robustness mainly relies on the HTML features
 - The URL features do not provide substantial robustness
- 3. Effectiveness of the manipulations
 - The SR manipulations reduces the detection rate (DR) to 50%
 - The MR manipulations significantly enhance the attack effectiveness, reducing the DR to near-zero with few queries

Wrap-up


1.

2.

3.

We propose 14 novel functionality- and rendering-preserving HTML adversarial manipulations Attacker economics are key New "CVEs" for the evaluated ML-PWD (and their features) DOM features of the page - The winner? We design a new query-efficient optimizer tailored on the proposed manipulations manipulations to generate adversarial phishing webpages in the problem space Optimizing the choice of the manipulations is the key to success Incentivize algorithmic evasion 90 Anti-malware: 2019-2021 Anti-phishing: 2021-2022 **Biometric auth: 2022** We release the source code and ML models: Lessons learned: https://github.com/advmlphish/raze to the ground aisec23 To foster reproducibility and a much fairer evaluation of the MI-PWD's robustness

4. Pre-print available on arXiv: https://arxiv.org/abs/2310.03166

Credits: Hyrum Anderson, Kevin Roundy, Savino Dambra