
FASER: Binary Code Similarity Search through 
the use of Intermediate Representations

By Josh Collyer, Tim Watson and Iain Phillips



Background



What is Binary Code Similarity Search?

- Essentially an information retrieval task
- Query function and a corpus of other functions, is my query function present within this corpus?
- Has been applied to a wide range of different task:

- Identifying N-days within software (lots of focus on firmware and IoT)
- Identifying open source libraries within binaries
- Identifying function re-use within software and malware
- Identifying prior reverse engineered functions 



This has been around for a while though right?

- Solved with NLP and Graphs (with a growing trend of combos)
- Approaches such as Asm2vec[1], SAFE[2] and GEMINI[3] pushed the field forward in 10’s
- Newer NLP approaches have leveraged transformers such as jTrans[4], PalmTree[5] and Trex[6]

- Either BERT or RoBERTa
- Pre-trained -> finetuned

- Sometimes cross architecture, usually mono across compilers + compiler options



Our Contribution



Proposed Approach

- Use the advancements in long context transformers by leveraging the LongFormer[7] 
architecture

- Different attention mechanism = More input tokens
- Ditch the pre-training and train for the objective directly

- A more targeted, high performing model
- Use an intermediate representation instead of bytes/disassembly

- Reduced need to normalisation, small vocab size and inherently cross-architecture
- Use deep metric learning, circle loss, online batch hard mining and dynamic pair generation

- Leverage the research coming out of facial recognition/image retrieval



Proposed Approach

- Use the advancements in long context transformers by leveraging the LongFormer[7] 
architecture

- Different attention mechanism = More input tokens
- Ditch the pre-training and train for the objective directly

- A more targeted, high performing model
- Use an intermediate representation instead of bytes/disassembly

- Reduced need to normalisation, small vocab size and inherently cross-architecture
- Use deep metric learning, circle loss, online batch hard mining and dynamic pair generation

- Leverage the research coming out of facial recognition/image retrieval



The Double Edged 
Sword - Deep 
Metric Learning

- Optimisation is driven by a metric -
typically distance

- Very frustrating to train
- Usually requires large batch sizes 

(512+) Feature Space Metric Space



Dynamic Pair Mining

- Most prior research using pre-computed pairs/triplets
- General process is:

- Embed all examples in batch
- Dynamically make positive and negatives pairs based on labels
- Generate losses
- Take the best/worst/mean/something of the losses and use to update network

- Constantly challenge the models weaknesses



Circle Loss[8]
- Used a lot in facial recognition and 

image retrieval generally
- Uses a circular decision boundary 

instead of a straight one
- Emphasises suboptimal similarity 

scores by re-weighting them using a 
dynamic penalty strength

- Able to deal with large similarity 
variations at the beginning of 
training/whilst your learning rate is 
high



Architecture Diagram



Dataset Used

- The Dataset-1 and Dataset-Vulnerability from Marcelli et al (2022)[9]
- Dataset-1

- ClamAV, Curl, nmap, Openssl, Unrar, z3 and zlib compiled using four different version of 
Clang/GCC over 5 different optimisation levels (1.5M functions once processed)

- Dataset-Vulnerability
- A 14 OpenSSL CVE’s present within the libcrypto libraries of two firmware images 

alongside the same library compiled for arm32, mips32, x86 and x86-64. 



Experiments



General Function Search

Objective: Given a query function, can the model correctly retrieve the correct function within a search 
pool of 100 negatives and 1 positive?

- The XM task was used from within Marcelli (2022)
- No constraints on architectures, bitness, compilers or optimisations.
- Hardest and closest to real life

Metrics: Recall@1 (also Precision@1 due to there only being one positive (i.e relevant) function in 
search pool) & Mean Reripical Rank (MRR)@10 (how far down the ranking the first relevant function is)



Results



Vulnerability Search

Objective: Given the a known vulnerable function within the OpenSSL libcrypto library, can the model 
identify if a given firmwares OpenSSL libcrypto library also contains the function?

- Approximately ~1000 functions in the firmware OpenSSL library
- Search-pool is effectively 10 times the size

Results reported are for the NETGEAR R700 (arm32) libcrypto vulnerability search.



Results



Zero Shot Experiment



Conclusions

- Forgoing pre-training seems to work
- Using intermediate representations as inputs for function 

search seems promising
- MIPS still an issue
- Not good enough for zero-shot architecture search
- Work to do on several areas:

- In-depth understanding of what functions the model 
struggles with

- Adoption and development of pre-filtering approaches
- Integration with other data sources such as decompiled 

code

*yet



Questions



References

[1] Ding, S.H., Fung, B.C. and Charland, P., 2019, May. Asm2vec: Boosting static representation robustness for binary clone search against code obfuscation and compiler optimization. In 2019 
IEEE Symposium on Security and Privacy (SP) (pp. 472-489). IEEE.

[2] Massarelli, L., Di Luna, G.A., Petroni, F., Baldoni, R. and Querzoni, L., 2019. Safe: Self-attentive function embeddings for binary similarity. In Detection of Intrusions and Malware, and 
Vulnerability Assessment: 16th International Conference, DIMVA 2019, Gothenburg, Sweden, June 19–20, 2019, Proceedings 16 (pp. 309-329). Springer International Publishing.

[3] Xu, X., Liu, C., Feng, Q., Yin, H., Song, L. and Song, D., 2017, October. Neural network-based graph embedding for cross-platform binary code similarity detection. In Proceedings of the 2017 
ACM SIGSAC conference on computer and communications security (pp. 363-376).

[4] Wang, H., Qu, W., Katz, G., Zhu, W., Gao, Z., Qiu, H., Zhuge, J. and Zhang, C., 2022, July. Jtrans: Jump-aware transformer for binary code similarity detection. In Proceedings of the 31st ACM 
SIGSOFT International Symposium on Software Testing and Analysis (pp. 1-13).

[5] Li, X., Qu, Y. and Yin, H., 2021, November. Palmtree: Learning an assembly language model for instruction embedding. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and 
Communications Security (pp. 3236-3251).

[6] Pei, K., Xuan, Z., Yang, J., Jana, S. and Ray, B., 2020. Trex: Learning execution semantics from micro-traces for binary similarity. arXiv preprint arXiv:2012.08680.



References (cont.)

[7] Beltagy, I., Peters, M.E. and Cohan, A., 2020. Longformer: The long-document transformer. arXiv preprint arXiv:2004.05150.

[8] Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z. and Wei, Y., 2020. Circle loss: A unified perspective of pair similarity optimization. In Proceedings of the IEEE/CVF conference on 
computer vision and pattern recognition (pp. 6398-6407).

[9] Marcelli, A., Graziano, M., Ugarte-Pedrero, X., Fratantonio, Y., Mansouri, M. and Balzarotti, D., 2022. How machine learning is solving the binary function similarity problem. In 31st USENIX 
Security Symposium (USENIX Security 22) (pp. 2099-2116).


