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Background



What is Binary Code Similarity Search?

- Essentially an information retrieval task
- Query function and a corpus of other functions, is my query function present within this corpus?
- Has been applied to a wide range of different task:

- Identifying N-days within software (lots of focus on firmware and IoT)
- Identifying open source libraries within binaries
- Identifying function re-use within software and malware
- Identifying prior reverse engineered functions 



This has been around for a while though right?

- Solved with NLP and Graphs (with a growing trend of combos)
- Approaches such as Asm2vec[1], SAFE[2] and GEMINI[3] pushed the field forward in 10’s
- Newer NLP approaches have leveraged transformers such as jTrans[4], PalmTree[5] and Trex[6]

- Either BERT or RoBERTa
- Pre-trained -> finetuned

- Sometimes cross architecture, usually mono across compilers + compiler options



Our Contribution



Proposed Approach

- Use the advancements in long context transformers by leveraging the LongFormer[7] 
architecture

- Different attention mechanism = More input tokens
- Ditch the pre-training and train for the objective directly

- A more targeted, high performing model
- Use an intermediate representation instead of bytes/disassembly

- Reduced need to normalisation, small vocab size and inherently cross-architecture
- Use deep metric learning, circle loss, online batch hard mining and dynamic pair generation

- Leverage the research coming out of facial recognition/image retrieval
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The Double Edged 
Sword - Deep 
Metric Learning

- Optimisation is driven by a metric -
typically distance

- Very frustrating to train
- Usually requires large batch sizes 

(512+) Feature Space Metric Space



Dynamic Pair Mining

- Most prior research using pre-computed pairs/triplets
- General process is:

- Embed all examples in batch
- Dynamically make positive and negatives pairs based on labels
- Generate losses
- Take the best/worst/mean/something of the losses and use to update network

- Constantly challenge the models weaknesses



Circle Loss[8]
- Used a lot in facial recognition and 

image retrieval generally
- Uses a circular decision boundary 

instead of a straight one
- Emphasises suboptimal similarity 

scores by re-weighting them using a 
dynamic penalty strength

- Able to deal with large similarity 
variations at the beginning of 
training/whilst your learning rate is 
high



Architecture Diagram



Dataset Used

- The Dataset-1 and Dataset-Vulnerability from Marcelli et al (2022)[9]
- Dataset-1

- ClamAV, Curl, nmap, Openssl, Unrar, z3 and zlib compiled using four different version of 
Clang/GCC over 5 different optimisation levels (1.5M functions once processed)

- Dataset-Vulnerability
- A 14 OpenSSL CVE’s present within the libcrypto libraries of two firmware images 

alongside the same library compiled for arm32, mips32, x86 and x86-64. 



Experiments



General Function Search

Objective: Given a query function, can the model correctly retrieve the correct function within a search 
pool of 100 negatives and 1 positive?

- The XM task was used from within Marcelli (2022)
- No constraints on architectures, bitness, compilers or optimisations.
- Hardest and closest to real life

Metrics: Recall@1 (also Precision@1 due to there only being one positive (i.e relevant) function in 
search pool) & Mean Reripical Rank (MRR)@10 (how far down the ranking the first relevant function is)



Results



Vulnerability Search

Objective: Given the a known vulnerable function within the OpenSSL libcrypto library, can the model 
identify if a given firmwares OpenSSL libcrypto library also contains the function?

- Approximately ~1000 functions in the firmware OpenSSL library
- Search-pool is effectively 10 times the size

Results reported are for the NETGEAR R700 (arm32) libcrypto vulnerability search.



Results



Zero Shot Experiment



Conclusions

- Forgoing pre-training seems to work
- Using intermediate representations as inputs for function 

search seems promising
- MIPS still an issue
- Not good enough for zero-shot architecture search
- Work to do on several areas:

- In-depth understanding of what functions the model 
struggles with

- Adoption and development of pre-filtering approaches
- Integration with other data sources such as decompiled 

code

*yet



Questions
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