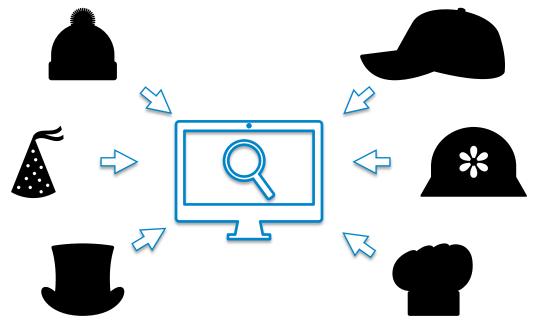


Adaptive Experimental Design for Intrusion Data Collection

Kate Highnam^{1,2}, Zach Hanif³, Ellie Van Vogt¹, Sonali Parbhoo¹, Sergio Maffeis¹, Nicholas R. Jennings⁴ ¹Imperial College London, ²The Alan Turing Institute, ³Independent Researcher, ⁴Loughborough University

Summary


- 1. Issues with Empirical Studies
- 2. Inspiration from Healthcare
- 3. Adaptive Design
- 4. Example Study

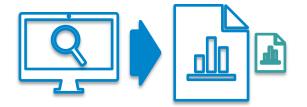
Contributions

- 1. The first adaptive method for a control study in security
 - Optimizing resource allocation and duration
 - Based on the events seen and error tolerance.
- 2. The first interventional study using honeypots
 - · Applying our method in the real world
 - · Demonstrates claims above during data collection


Intrusion Data Collection

Observational vs....

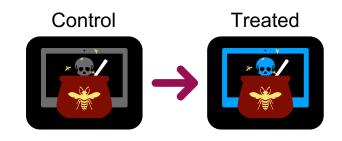
- Easily available to acquire (purchase or record)
- High potential for bias due to uncontrolled characteristics



Observational vs. Interventional

- Easily available to acquire (purchase or record)
- High potential for bias due to uncontrolled characteristics

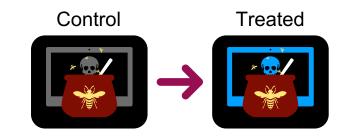
- Relatively difficult to acquire
- Controls characteristics studied
- Limit possible spurious correlations between variables and outcomes
- Includes "counterfactual" group



Interventional Study

- Population
- Treatment
- Control Group
- Duration
- Objectives
- Event of Interest
- Endpoints

Interventional Study


- Population
- Control Group
- Duration
- Objectives
- Event of Interest
- Endpoints

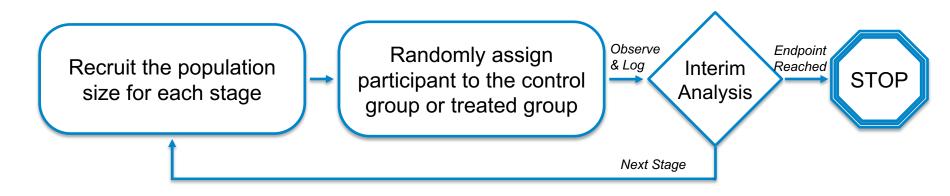
36 hours 600 honeypots max

Interventional Study

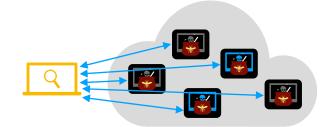
- Population
- Treatment
- Control Group
- Duration
- Event of Interest Exploit occurred on host
- Endpoints Run out of money?

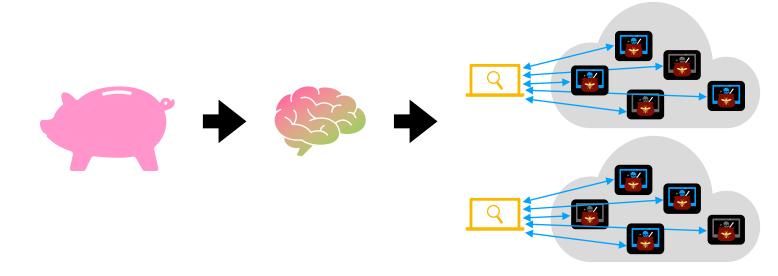
Interventional Study

- Population
- Treatment
- Control Group
- Duration
- Objectives
- Event of Interest
- Endpoints


Healthcare to Intrusion Data Collection with Honeypots

Healthcare	Security
"Trial"	"A study comparing honeypots with and without a vulnerability"
"Study population"	"Our Ubuntu honeypots with our host-based sensors"
"Patient" or "participant"	"A honeypot"
"Recruiting more subjects"	"Starting more honeypots with specific characteristics"
"Disease"	"Attacker technique used to exploit"
"Intervention" or "treatment"	"Corruption" or "the presence or insertion of a vulnerability"
"Treated"	"Corrupted" or "made vulnerable"

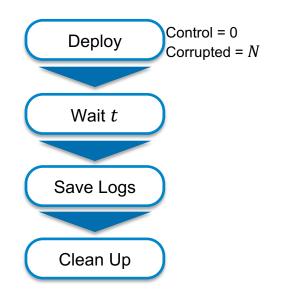



Randomized Control Trial (RCT)

The "gold standard" for clinical trial research:

Randomized Control Trial (RCT)

Our Adaptive Design (AD)

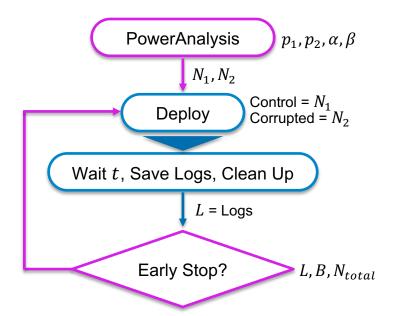

- ★ Achieve the same confirmation from RCT on intervention effect
- ★ Adapt the deployments based on observed trends
- ★ Encourage data collection on events of interest

Comparing Trial Methods

Observational Study

Inputs:

- *b* = Budget for trial
- *t* = Trial Duration (in hours)

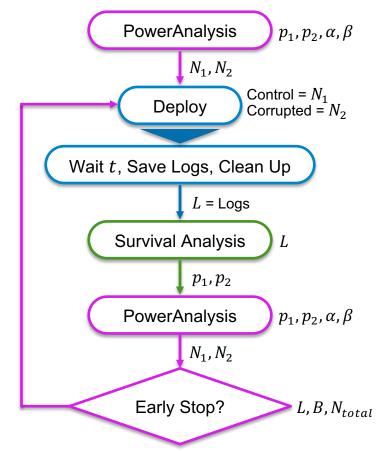


Comparing Trial Methods

Randomized Control Trial

Inputs:

- *b* = Budget for trial
- *t* = **Stage** Duration (in hours)
- α = The probability of committing a **Type I error**
- β = The probability of committing a **Type II error**
- p_1 = Proportion of **control** group getting exploited
- p_2 = Proportion of **corrupted** group getting exploited



Comparing Trial Methods

Adaptive Design

Inputs:

- *b* = Budget for trial
- *t* = **Stage** Duration (in hours)
- α = The probability of committing a **Type I error**
- β = The probability of committing a **Type II error**
- p_1 = Proportion of **control** group getting exploited
- p_2 = Proportion of **corrupted** group getting exploited

Targeting Data Collection in Interventional Studies

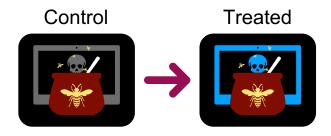
How to encourage collection of intrusions? Alter the **objectives**!

1. Confirm evidence of corruption's impact within the population

2. Maximize the recording of events of interest

wget https://data.hpc.imperial.ac.uk/resolve/\?doi\=9422\&file\=4\&access\= -0 full_BETH_dataset.zip

BETH Dataset


Real Cybersecurity Data for Anomaly Detection Research

Kate Highnam, Kai Arulkumaran, Zachary Hanif, Nicholas R. Jennings

Imperial College London The Alan Turing ARAYA INIVERSITY OF Loughborough Institute University

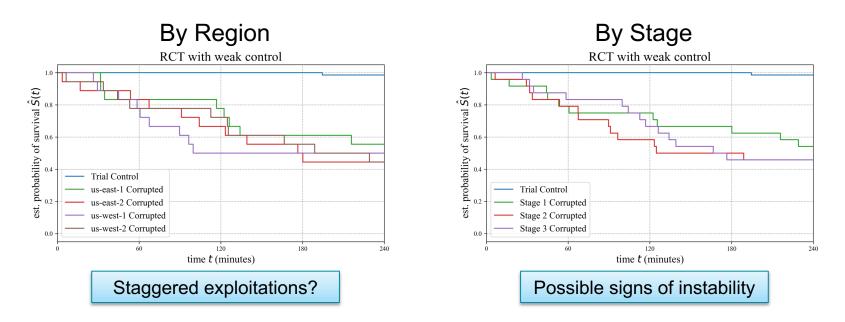
Example: Honeypot Study

- Population:
 - Cloud-based Ubuntu servers; hosted by same cloud provider
 - Four regions within the US; Randomly assigned IP ranges based on region
- Corruption: SSH vulnerability accepting any password for four IT user accounts
- Control Group: same IT user accounts only accept 'password' as the password
- Duration: 12 hours per trial
- Objectives:
 - 1. Determine if corruption significantly increases successful SSH logins
 - 2. Maximize exploitation rate across regions
- Event of Interest: User login is successful in one of the four user accounts
- Endpoints: Maximum number of honeypots reached (200 per trial).

To limit error, set $\alpha = 0.05$ and $\beta = 0.10$

Method for Trial	Control	Corrupted	Total Deployed	Total Attacks Seen
Vanilla	0	140	140	137
RCT	72	72	144	42
AD	32	87	119	50

Imperial College London	


$$p_1 = 0.01 \rightarrow p_1 = 0.15$$

	REGION	RCT	AD
STAGE 1 - TOTAL		48	48
CONTROL	EAST-1	6	6
	EAST-2	6	6
	WEST-1	6	6
	WEST-2	6	6
CORRUPTED	EAST-1	6	6
	EAST-2	6	6
	WEST-1	6	6
	WEST-2	6	6
STAGE 2 - TOTAL		48	52
CONTROL	EAST-1	6	4
	EAST-2	6	4
	WEST-1	6	0
	WEST-2	6	0
CORRUPTED	EAST-1	6	8
	EAST-2	6	12
	WEST-1	6	8
	west-2	6	16
STAGE 3 - TOTAL		48	19
CONTROL	EAST-1	6	0
	EAST-2	6	0
	WEST-1	6	0
	WEST-2	6	0
CORRUPTED	EAST-1	6	2
	EAST-2	6	5
	WEST-1	6	8
	WEST-2	6	4
TRIAL - TOTAL		144	119
TOTAL ATTACKS		42	50

		REGION	RCT	AD
	STAGE 1 - TOTAL		48	48
	CONTROL	EAST-1	6	6
		EAST-2	6	6
		WEST-1	6	6
		WEST-2	6	6
at Study	CORRUPTED	EAST-1	6	6
ot Study		EAST-2	6	6
		WEST-1	6	6
		WEST-2	6	6
	STAGE 2 - TOTAL		48	52
	CONTROL	EAST-1	6	4
		EAST-2	6	4
$p_1 = 0.01 \rightarrow p_1 = 0.15$		WEST-1	6	0
		WEST-2	6	0
	CORRUPTED	EAST-1	6	8
		EAST-2	6	12
		WEST-1	6	8
		WEST-2	6	16
	STAGE 3 - TOTAL		48	19
	CONTROL	EAST-1	6	0
		EAST-2	6	0
$p_1 = 0.15 \rightarrow p_1 = 0$		WEST-1	6	0
		WEST-2	6	0
	CORRUPTED	EAST-1	6	2
		EAST-2	6	5
		WEST-1	6	8
		WEST-2	6	4
	TRIAL - TOTAL		144	119
	TOTAL ATTACKS		42	50

$$p_1 = 0.15 \rightarrow p_1 = 0$$

	REGION	RCT	AD
Stage 1 - Total		48	48
CONTROL	EAST-1	6	6
	EAST-2	6	6
	WEST-1	6	6
	west-2	6	6
CORRUPTED	EAST-1	6	6
	EAST-2	6	6
	WEST-1	6	6
	WEST-2	6	6
STAGE 2 - TOTAL		48	52
CONTROL	EAST-1	6	4
	EAST-2	6	4
	WEST-1	6	0
	west-2	6	0
CORRUPTED	EAST-1	6	8
	EAST-2	6	12
	west-1	6	8
	west-2	6	16
STAGE 3 - TOTAL		48	19
CONTROL	EAST-1	6	0
	EAST-2	6	0
	WEST-1	6	0
	WEST-2	6	0
CORRUPTED	EAST-1	6	2
	EAST-2	6	5
	WEST-1	6	8
	WEST-2	6	4
TRIAL - TOTAL		144	119
TOTAL ATTACKS		42	50
	L. L.		

Conclusions and Future Work

- First to apply adaptive experimental study in intrusion data collection
- Provide general details on how to run other intrusion-focused experimental studies
- Successfully identify causal relations between a corruption and events of interest collecting data with true relations between features to learn general trends
- Our honeypot study showed our AD can confirm corruption effect at 33% of total trial duration compared to RCT
 - By the end of the trial, our AD used 17% fewer honeypots to see 19% more attacks
- Future work:
 - Implement multiple vulnerabilities to study the interaction of corruptions
 - Use our method to remove bias in a dataset \rightarrow demonstrate improved model learning

Kate Highnam

https://www.imperial.ac.uk/people/k.highnam19 @jinxmirror13