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• Large Language Models (LLMs) have seen rapid adoption
• ChatGPT, BARD, LLaMA, etc

• Studies on adversarial attacks against LLMs are limited

• ML models are vulnerable to attacks
• Model stealing, data leakage, evasion, etc

Research Problem
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• A new extraction attack targeting LLMs
• Generalisable across different LLMs
• Open-sourced and closed-source
• Only requires API access

• Distils task-specific LLM knowledge into a reduced parameter model
• QA, Text Classification, Text Generation, etc.

• Facilitates further attack staging vs. LLMs
• With improved lethality

Model Leeching
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Attack Design
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Further Attack Staging



• Assumes a weak adversary
• Capable of providing model input via an LLM API endpoint

• Adversary requires no knowledge of:
• Target architecture
• Training data
• Underlying LLM parameters
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Threat Model



Attack Scenario Setup
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• Applied against OpenAI's ChatGPT

• Largest and most capable publicly available model
• ...with API access

• ChatGPT-3.5-Turbo version
• Targeting its QA knowledge
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Extraction Target



• Start with a single rule set
• Expand until no longer followed
• Use simple and direct language

• Each LLM responds uniquely
• ChatGPT doesn’t like excessive rules
• System role ignored by model

• Parsing requirements
• Validate task ability
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Prompt Discovery



• Generate a dataset of prompts
• Using SQuAD

• Applies rules ensuring:
• Capture of task-specific knowledge
• Keeps task focused
• Formats for automatic parsing
• Doesn't respond if uncertain
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Prompt Construction



• Train a set of stolen models
• Trained on leeched data from target LLM

• Three foundational models
• BERT, ROBERTA, ALBERT
• Used as a baseline

• Parameter sizes much smaller than target
• 14 to 123 million
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Stolen Models



• Optimise attack with stolen model
• Exploit unlimited query access

• AddSent attack
• Causes target to answer incorrectly

• Improve adversarial examples
• Tested on our stolen model
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Attack Staging



Results
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• 100k examples of contexts, questions and answers within SQuAD
• 83,335 total usable examples collected

• $50 data labelling ($3.6k equivalent in Amazon Sage Maker)

• Less than 48 hours
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Dataset Labelling



• Target LLMs distillation into stolen model:
• Validation: Check EM and F1 scores for response similarity to ChatGPT

• Task performance of stolen models:
• Validation: Compare performance with ChatGPT and baselines

• Attack transferability between models:
• Validation: Assess optimised attack effectiveness against ChatGPT
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Analysis Context
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Selected Models vs ChatGPT

• Larger stolen models have higher similarity to ChatGPT
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Selected Models vs Baseline

• Stolen model’s task capability comparable to ChatGPT

ChatGPT
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Further Attack Staging

• Attack transferability from stolen to target LLM

+26.89%

+26.08%

+11.01%



Implications
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LLM Model
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• Model Leeching a novel LLM extraction attack

• Applied to ChatGPT and achieved 87% task capability
• 100x reduced parameter size, $50 cost, < 48 hours

• Evidenced attack transferability between LLMs
• 11% attack effectiveness increase

• Future work:
• Are there shared vulnerabilities amongst open-source models?
• How can we defend against this type of attack?
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Summary



Thank you for listening!
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Email: lewis.birch@mindgard.ai 


