Lancaster
University = °

=

W MINDGAR

Compilation as a Defense

Enhancing DL Model Attack Robustness via Tensor
Optimization

Stefan Trawicki, William Hackett, Lewis Birch, Neeraj Suri,
Peter Garraghan

i MINDGARD

Adversarial ML (AML)

e Attacks on ML models and their systems

* Threat classification frameworks
e Extraction (stealing)
* Inversion (reproducing data)
e Evasion (tricking the model)
—0—» | API
Framework
-O— 0s
Hardware 4—&

Model

Parameters, Architecture,
Training Data)

i MINDGARD

AML Side-Channel Attacks

* Extract leaky information from running processes

* Associate data with model attributes
* Models can have a fingerprint left by resource access and allocation

e Extract sensitive or valuable information

T
WL —

Price

Camera Qugiiff
Bal

Reconstruction

i MINDGARD

Risks Posed by Side-Channels

* Leaky information has many sources
* Data not yet considered sensitive or important, hence unsecured

* Potentially model and dataset agnostic
* Undertaken in few inferences (< 1 second)

 Steal an architecture, parameters, data, stage further attacks

i MINDGARD

Current Defences

e Standard cybersec methods to secure system

* But huge space to secure
O O Q O Input Layer € R* O O O Q Input Layer € R*

* ModelObfuscator
* Obscures and adds loop structures
* But not model or framework agnostic 2
. . . O Output Layer € R O O O OutputLayer € R®
* Model fingerprint can remain as before... o il neusal nodes I

O O Hidden Layer € R? O O O O O O Hddenlayerere

A method to agnostically modify architecture and fingerprint is better...

i MINDGARD

Objective

* Compilation as a Defence
* Generate bespoke neural network operator implementations

* Model operator schedule modification
* Less readable fingerprint as a byproduct of optimization?
* Break the model-process associations
* Lower chance of reproduction

* No negative impact on inference time

i MINDGARD

Background: ML Compilers

* Tensorflow, Pytorch, etc, provide graph representations that are
mapped into executable code

* Intermediate representations (IRs) are ‘lowered’
* Graph = tuned IRs - LLVM, NVCC - machine code
* Lowering IRs generates unoptimized code for a machine
* Most compilers use heuristics to apply optimizations

Vertical fusion

[_next input |
/77”7’ e
_— "
\\ 3x3 CBR 5%5 CBR 1x1 CBR
==
,//.

E—
Original T

Horizontal fusion

i MINDGARD

Background: Apache TVM

* Generates bespoke implementations per machine
* Uses simulated annealing to generate candidates

* Runs trials guided by a tuner Famewoks B O @ @ [d @
| Computanznal Graph]
7
o End-to-end Section 3 High Level Graph Rewriting

Y
| Optimized Computational Graph |
g

* Accepts almost any frontend

.. Operator-level Optimzation and Code Generation
* Optimizes flow graph and operators

Declarative Hardware-Aware

Section 4 Tensor Expressions Optimization Primitives
e Targets almost any backend e ~ s
Automated Optimizer

7
| Optimized Low Level Loop Program |

* Model/framework agnostic — ey
| AcceleratorBackend || wwvmip || cubAMetalOpencL |

* Leverages a very mature ecosystem i
| Depioyable Module |

i MINDGARD

Goal

* Apply TVM to different models

* Different domains, architectures, sizes

* Perform increasing amounts of optimization
* More trials and better-performing tuners

* Assess whether attack success is decreased with optimized models

4 MINDGARD
Experiment Setup

 ResNetl8, DenseNet121, RoBERTa & YoloV4

e 8-124 million parameters
* Multi-domain (image classifier, text, object detection)
e All ONNX framework

* TVM parameters
* 0to 500 trials
 Random and XGB rank tuner
* Additionally, graph optimisation was tested

= ~240 combinations
= 83 hours of compute

i MINDGARD

Method: Assessment pipeline

* Nvidia NCU to measure kernel memory reads/writes

* Measure reconstruction accuracy (fidelity) of stolen model with the

DeepSniffer Side Channel Attack

ONNX
Models in TVM 8%8” - “
runtime . '
1’!“....]’ Iﬁﬂiﬁﬁ”
~ Reproduced

IR IHIHHIHHHMH ""A_"l,'.'.'.'.':::;;u
A100 GPU i Ny De:ftsar::ilifer (If;glde;) 11

i MINDGARD

Preliminary Results

12

Fidelity

BOIN ResNetl8

XGB Rank Tuner

I YoloV4 I RoBERTa

i MINDGARD
EES¥ DenseNetl2l

o o o

o - -

on o on
1 1 1

0.00 -

Trials

100

500

13

Fidelity

Random Tuner " MINDGARD
MO ResNetl8 [YoloV4 A RoBERTa EES¥ DenseNetl2l

50 100 500
Trials

14

i MINDGARD

Discussion

15

0.7

B0 ResNetl8

XGB Rank Tuner

I YoloV4

2 RoBERTa

i MINDGARD

Graph Optimization

EES¥ DenseNetl21

50

100
Trials

500

Random Tuner
BOM ResNetl8 I Yolov4 I RoBERTa EEs¥ DenseNetl2l

0.7
0.6 -

0 1 5 10 25 50 100 500
Trials

16

& MINDGARD
Selective Operator Optimization

* Find operators conducive to fingerprinting and optimize them heavily
* Would require far less compute
* Use to better guide the tuner

SoftMax, two
64I-|I|cf 3x3 Conv 3x3 Conv 33 Conv 3x3 Conv Classification
64 Filter 128 Filter 236 Filter 312 Filter Poolmg Oulpus
stride 2
Input 33 Conv 33 Comy 3x3 Com x3 Conv
Image P"' 64 Filter 128 Filer 256 Fiter 512 iler Fe@)
20

ML L L L LLLLLL |I L
0 1

W Previous Resource Allocation m New Allocation 17

Utilize Ansor

* This experimentation used AutoTVM

* Ansor/Auto-Scheduler generates even more bespoke

implementations

i MINDGARD

AutoTVM Workflow

Auto-scheduler Workflow

Step 1:
Write a compute
definition

(relatively easy part)

Matrix multiply

C = te.compute((M, N), lambda x, y:
te.sum(A[x, k] * B[k, y], axis=k))

The same

20-100 lines of tricky DSL code

Define search space
cfg.define_split("tile_x", batch, num_outputs=4)

Not required

Step 2: cfg.define_split("tile_y", out_dim, num_outputs=4)
Write a schedule
template
Apply config into the template
(difficult part) bx, txz, tx, xi = cfg["tile_x"].apply(s, C, C.op.axis[@])
by, tyz, ty, yi = cfg["tile_y"].apply(s, C, C.op.axis[1])
s[C].reorder(by, bx, tyz, txz, ty, tx, yi, xi)
s[CC].compute_at(s[C], tx)
Step 3: tuner.tune(..) task.tune(..)

Run auto-tuning
(automatic search)

18

i MINDGARD

Other Ideas

* Frequently changing the applied optimizations
* Moving-target

* Applying in combination with existing approaches
* Theoretically fully compatible with ModelObfuscator

i MINDGARD
Conclusions

* Demonstrated automatic & agnostic method to increase model
robustness to attack

 Attack success decreases of over 40% using tensor optimization

* Discussed avenues to expand on the preliminary work

