
Compilation as a Defense
Enhancing DL Model Attack Robustness via Tensor

Optimization

Stefan Trawicki, William Hackett, Lewis Birch, Neeraj Suri, 
Peter Garraghan



Adversarial ML (AML)

• Attacks on ML models and their systems

• Threat classification frameworks
• Extraction (stealing)
• Inversion (reproducing data)
• Evasion (tricking the model)

2



AML Side-Channel Attacks

• Extract leaky information from running processes

• Associate data with model attributes
• Models can have a fingerprint left by resource access and allocation

• Extract sensitive or valuable information

3



Risks Posed by Side-Channels

• Leaky information has many sources
• Data not yet considered sensitive or important, hence unsecured

• Potentially model and dataset agnostic

• Undertaken in few inferences (< 1 second)

• Steal an architecture, parameters, data, stage further attacks

4



Current Defences

• Standard cybersec methods to secure system
• But huge space to secure

• ModelObfuscator
• Obscures and adds loop structures
• But not model or framework agnostic
• Model fingerprint can remain as before…

• A method to agnostically modify architecture and fingerprint is better…

5



Objective

• Compilation as a Defence
• Generate bespoke neural network operator implementations

• Model operator schedule modification
• Less readable fingerprint as a byproduct of optimization?
• Break the model-process associations
• Lower chance of reproduction

• No negative impact on inference time

6



Background: ML Compilers

• Tensorflow, Pytorch, etc, provide graph representations that are 
mapped into executable code

• Intermediate representations (IRs) are ‘lowered’
• Graph → tuned IRs → LLVM, NVCC → machine code
• Lowering IRs generates unoptimized code for a machine
• Most compilers use heuristics to apply optimizations

7



Background: Apache TVM

8

• Generates bespoke implementations per machine
• Uses simulated annealing to generate candidates
• Runs trials guided by a tuner

• End-to-end
• Accepts almost any frontend
• Optimizes flow graph and operators
• Targets almost any backend

• Model/framework agnostic
• Leverages a very mature ecosystem



Goal

• Apply TVM to different models
• Different domains, architectures, sizes

• Perform increasing amounts of optimization
• More trials and better-performing tuners

• Assess whether attack success is decreased with optimized models

9



Experiment Setup

• ResNet18, DenseNet121, RoBERTa & YoloV4
• 8-124 million parameters
• Multi-domain (image classifier, text, object detection)
• All ONNX framework

• TVM parameters
• 0 to 500 trials
• Random and XGB rank tuner
• Additionally, graph optimisation was tested

10

= ~240 combinations
= 83 hours of compute



Nvidia NCU DeepSniffer
AttackA100 GPU

ONNX
Models in TVM 

runtime

Reproduced
(Stolen)
Model

Method: Assessment pipeline

• Nvidia NCU to measure kernel memory reads/writes

• Measure reconstruction accuracy (fidelity) of stolen model with the 
DeepSniffer Side Channel Attack

11



12

Preliminary Results



13



14



15

Discussion



16

Graph Optimization



Selective Operator Optimization

• Find operators conducive to fingerprinting and optimize them heavily
• Would require far less compute
• Use to better guide the tuner

17

0

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Previous Resource Allocation New Allocation



Utilize Ansor

• This experimentation used AutoTVM

• Ansor/Auto-Scheduler generates even more bespoke 
implementations

18



Other Ideas

• Frequently changing the applied optimizations
• Moving-target

• Applying in combination with existing approaches
• Theoretically fully compatible with ModelObfuscator

19



Conclusions

• Demonstrated automatic & agnostic method to increase model 
robustness to attack

• Attack success decreases of over 40% using tensor optimization

• Discussed avenues to expand on the preliminary work

20


