

Compilation as a Defense

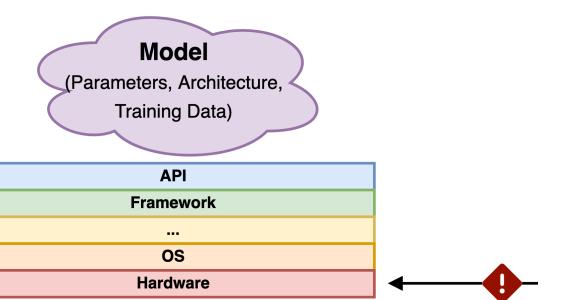
Enhancing DL Model Attack Robustness via Tensor Optimization

Stefan Trawicki, William Hackett, Lewis Birch, Neeraj Suri, Peter Garraghan

Adversarial ML (AML)

Attacks on ML models and their systems

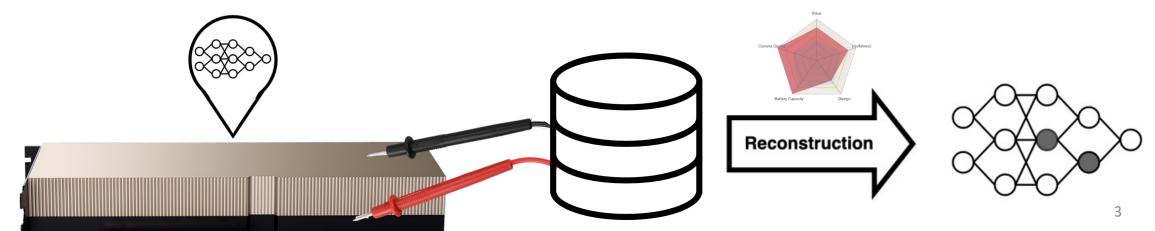
- Threat classification frameworks
 - Extraction (stealing)
 - **Inversion** (reproducing data)
 - Evasion (tricking the model)



AML Side-Channel Attacks

Extract leaky information from running processes

- Associate data with model attributes
 - Models can have a *fingerprint* left by resource access and allocation
- Extract sensitive or valuable information



Risks Posed by Side-Channels

- Leaky information has many sources
 - Data not yet considered sensitive or important, hence unsecured

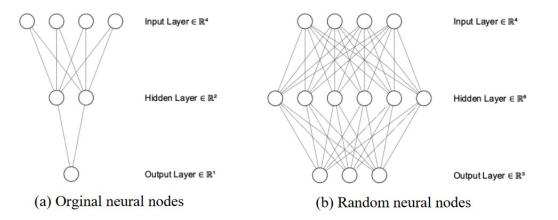
Potentially model and dataset agnostic

Undertaken in few inferences (< 1 second)

• Steal an architecture, parameters, data, stage further attacks

Current Defences

- Standard cybersec methods to secure system
 - But huge space to secure
- ModelObfuscator
 - Obscures and adds loop structures
 - But not model or framework agnostic
 - Model fingerprint can remain as before...



• A method to agnostically modify architecture and fingerprint is better...

Objective

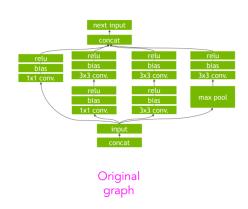
- Compilation as a Defence
 - Generate bespoke neural network operator implementations
- Model operator schedule modification
 - Less readable fingerprint as a byproduct of optimization?
 - Break the model-process associations
 - Lower chance of reproduction
- No negative impact on inference time

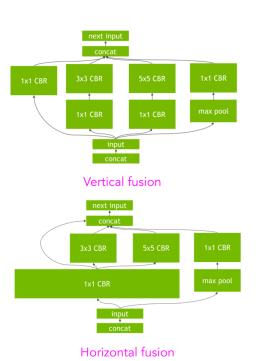
Background: ML Compilers

 Tensorflow, Pytorch, etc, provide graph representations that are mapped into executable code

- Intermediate representations (IRs) are 'lowered'
 - Graph → tuned IRs → LLVM, NVCC → machine code
 - Lowering IRs generates unoptimized code for a machine
 - Most compilers use heuristics to apply optimizations

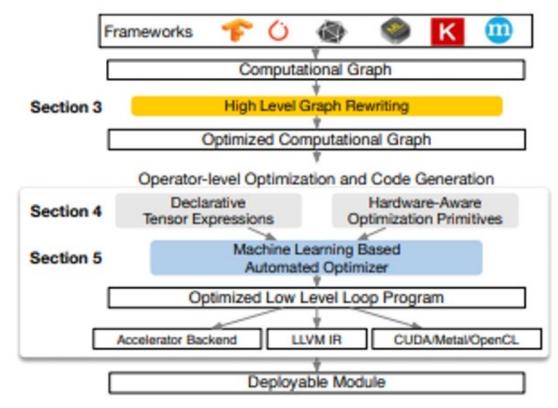






Background: Apache TVM

- Generates bespoke implementations per machine
 - Uses simulated annealing to generate candidates
 - Runs trials guided by a tuner
- End-to-end
 - Accepts almost any frontend
 - Optimizes flow graph and operators
 - Targets almost any backend
- Model/framework agnostic
 - Leverages a very mature ecosystem



Goal

- Apply TVM to different models
 - Different domains, architectures, sizes
- Perform increasing amounts of optimization
 - More trials and better-performing tuners
- Assess whether attack success is decreased with optimized models

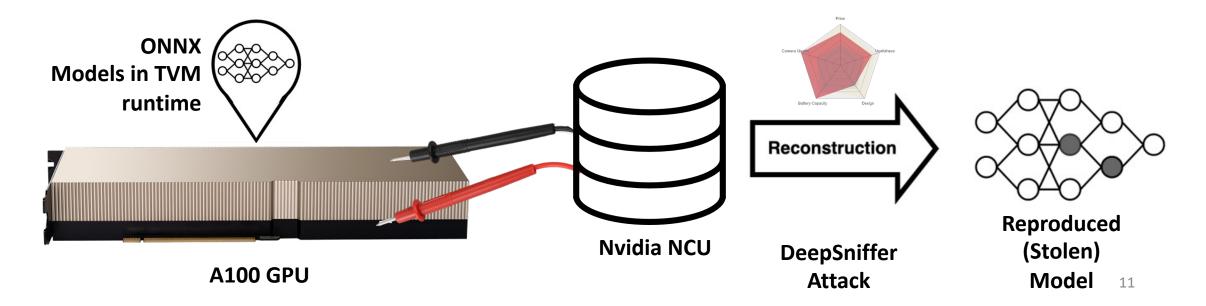
Experiment Setup

- ResNet18, DenseNet121, RoBERTa & YoloV4
 - 8-124 million parameters
 - Multi-domain (image classifier, text, object detection)
 - All ONNX framework
- TVM parameters
 - 0 to 500 trials
 - Random and XGB rank tuner
 - Additionally, graph optimisation was tested
 - = ~240 combinations
 - = 83 hours of compute

Method: Assessment pipeline

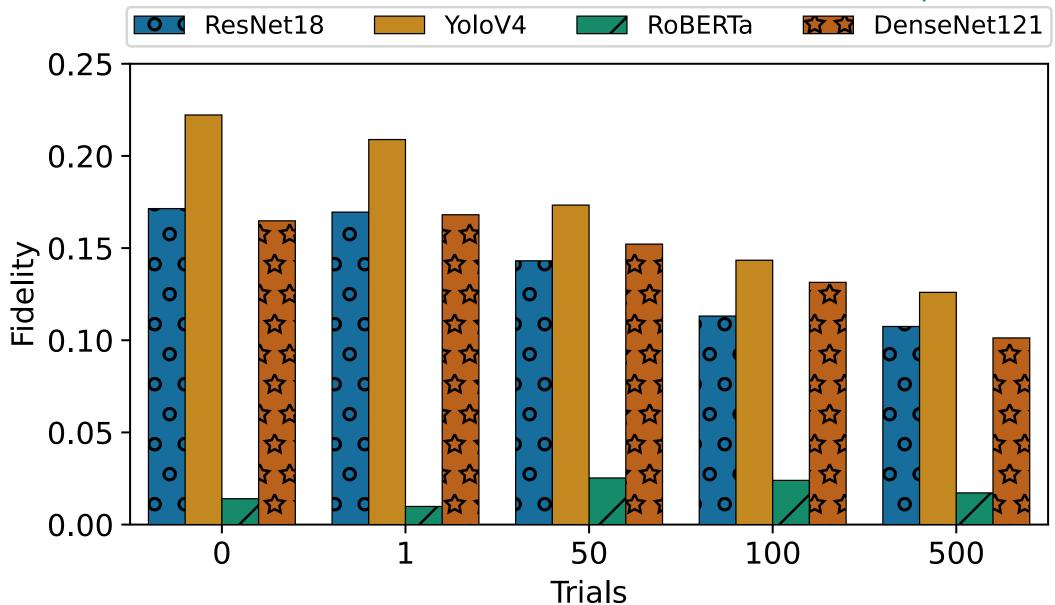
Nvidia NCU to measure kernel memory reads/writes

 Measure reconstruction accuracy (fidelity) of stolen model with the DeepSniffer Side Channel Attack

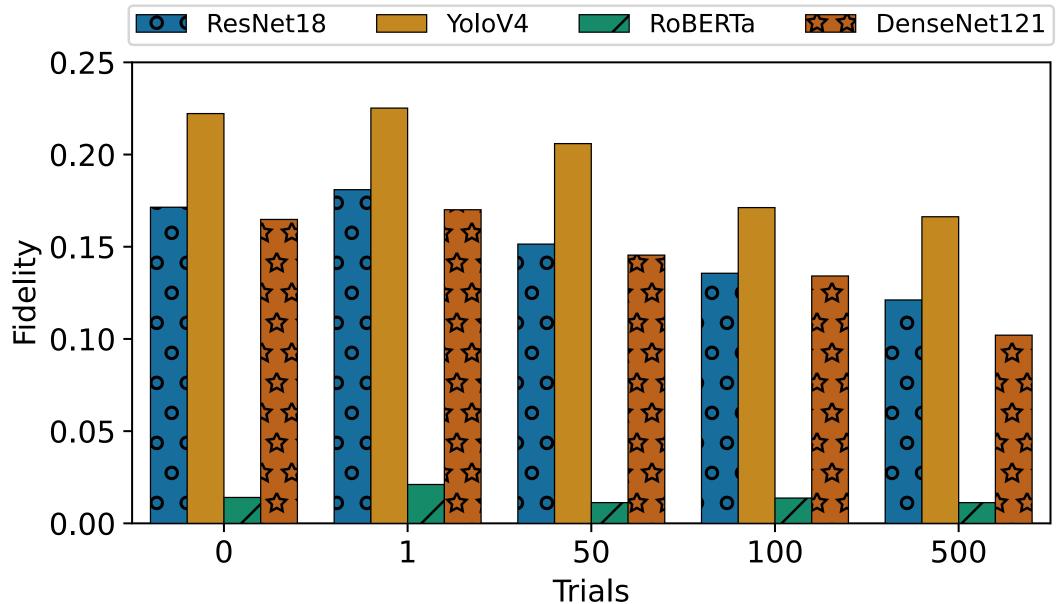


Preliminary Results

XGB Rank Tuner

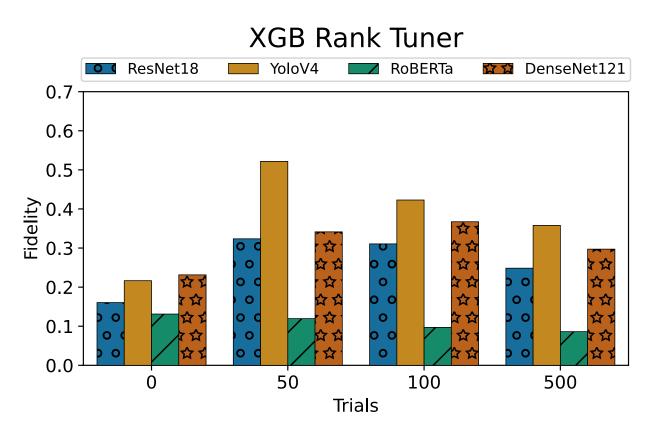


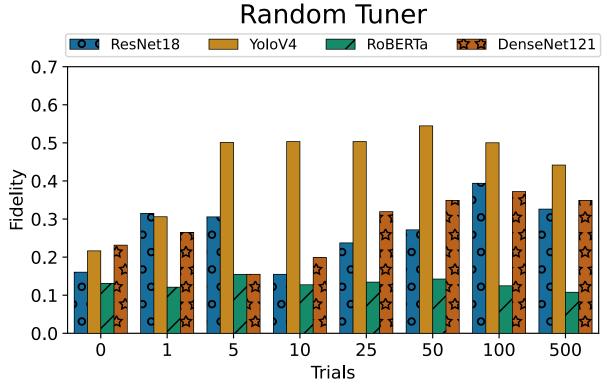
Random Tuner



Discussion

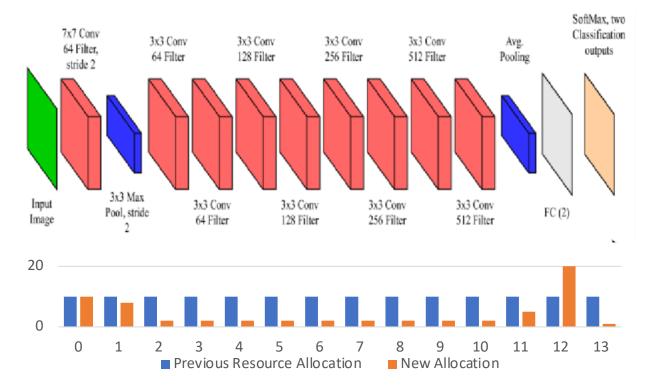
Graph Optimization





Selective Operator Optimization

- Find operators conducive to fingerprinting and optimize them heavily
 - Would require far less compute
 - Use to better guide the tuner



Utilize Ansor

This experimentation used AutoTVM

Ansor/Auto-Scheduler generates even more bespoke implementations

	AutoTVM Workflow	Auto-scheduler Workflow
Step 1:	# Matrix multiply	# The same
Write a compute		
definition	<pre>C = te.compute((M, N), lambda x, y:</pre>	
(relatively easy part)		
	# 20-100 lines of tricky DSL code	# Not required
	# Define search space	
Cham 3:	<pre>cfg.define_split("tile_x", batch, num_outputs=4)</pre>	
Step 2: Write a schedule	<pre>cfg.define_split("tile_y", out_dim, num_outputs=4)</pre>	
template		
•	# Apply config into the template	
(difficult part)	<pre>bx, txz, tx, xi = cfg["tile_x"].apply(s, C, C.op.axis[0])</pre>	
	<pre>by, tyz, ty, yi = cfg["tile_y"].apply(s, C, C.op.axis[1])</pre>	
	s[C].reorder(by, bx, tyz, txz, ty, tx, yi, xi)	
	s[CC].compute_at(s[C], tx)	
	•••	
Step 3:	tuner.tune()	task.tune()
Run auto-tuning		
(automatic search)		

Other Ideas

- Frequently changing the applied optimizations
 - Moving-target
- Applying in combination with existing approaches
 - Theoretically fully compatible with ModelObfuscator

Conclusions

 Demonstrated automatic & agnostic method to increase model robustness to attack

Attack success decreases of over 40% using tensor optimization

Discussed avenues to expand on the preliminary work