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Adversarial ML (AML)

e Attacks on ML models and their systems

* Threat classification frameworks
e Extraction (stealing)
* Inversion (reproducing data)
e Evasion (tricking the model)
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AML Side-Channel Attacks

* Extract leaky information from running processes

* Associate data with model attributes
* Models can have a fingerprint left by resource access and allocation

e Extract sensitive or valuable information
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Risks Posed by Side-Channels

* Leaky information has many sources
* Data not yet considered sensitive or important, hence unsecured

* Potentially model and dataset agnostic
* Undertaken in few inferences (< 1 second)

 Steal an architecture, parameters, data, stage further attacks
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Current Defences

e Standard cybersec methods to secure system

* But huge space to secure
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* ModelObfuscator
* Obscures and adds loop structures
* But not model or framework agnostic 2
. . . O Output Layer € R O O O OutputLayer € R®
* Model fingerprint can remain as before... o il neusal nodes I
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A method to agnostically modify architecture and fingerprint is better...



i MINDGARD

Objective

* Compilation as a Defence
* Generate bespoke neural network operator implementations

* Model operator schedule modification
* Less readable fingerprint as a byproduct of optimization?
* Break the model-process associations
* Lower chance of reproduction

* No negative impact on inference time
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Background: ML Compilers

* Tensorflow, Pytorch, etc, provide graph representations that are
mapped into executable code

* Intermediate representations (IRs) are ‘lowered’
* Graph = tuned IRs - LLVM, NVCC - machine code
* Lowering IRs generates unoptimized code for a machine
* Most compilers use heuristics to apply optimizations
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Background: Apache TVM

* Generates bespoke implementations per machine
* Uses simulated annealing to generate candidates

* Runs trials guided by a tuner Famewoks B O @ @ [d @
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* Accepts almost any frontend

.. Operator-level Optimzation and Code Generation
* Optimizes flow graph and operators
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* Leverages a very mature ecosystem i
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Goal

* Apply TVM to different models

* Different domains, architectures, sizes

* Perform increasing amounts of optimization
* More trials and better-performing tuners

* Assess whether attack success is decreased with optimized models
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Experiment Setup

 ResNetl8, DenseNet121, RoBERTa & YoloV4

e 8-124 million parameters
* Multi-domain (image classifier, text, object detection)
e All ONNX framework

* TVM parameters
* 0to 500 trials
 Random and XGB rank tuner
* Additionally, graph optimisation was tested

= ~240 combinations
= 83 hours of compute
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Method: Assessment pipeline

* Nvidia NCU to measure kernel memory reads/writes

* Measure reconstruction accuracy (fidelity) of stolen model with the

DeepSniffer Side Channel Attack
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Preliminary Results

12



Fidelity

BOIN ResNetl8

XGB Rank Tuner

I YoloV4 I RoBERTa

i MINDGARD
EES¥ DenseNetl2l

o o o

o - -

on o on
1 1 1

0.00 -

Trials

100

500

13



Fidelity

Random Tuner " MINDGARD
MO ResNetl8 [ YoloV4 A RoBERTa EES¥ DenseNetl2l

50 100 500
Trials

14



i MINDGARD

Discussion
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Graph Optimization
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Selective Operator Optimization

* Find operators conducive to fingerprinting and optimize them heavily
* Would require far less compute
* Use to better guide the tuner
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Utilize Ansor

* This experimentation used AutoTVM

* Ansor/Auto-Scheduler generates even more bespoke

implementations
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AutoTVM Workflow

Auto-scheduler Workflow

Step 1:
Write a compute
definition

(relatively easy part)

# Matrix multiply

C = te.compute((M, N), lambda x, y:
te.sum(A[x, k] * B[k, y], axis=k))

# The same

# 20-100 lines of tricky DSL code

# Define search space
cfg.define_split("tile_x", batch, num_outputs=4)

# Not required

Step 2: cfg.define_split("tile_y", out_dim, num_outputs=4)
Write a schedule
template
# Apply config into the template
(difficult part) bx, txz, tx, xi = cfg["tile_x"].apply(s, C, C.op.axis[@])
by, tyz, ty, yi = cfg["tile_y"].apply(s, C, C.op.axis[1])
s[C].reorder(by, bx, tyz, txz, ty, tx, yi, xi)
s[CC].compute_at(s[C], tx)
Step 3: tuner.tune(..) task.tune(..)

Run auto-tuning
(automatic search)
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Other Ideas

* Frequently changing the applied optimizations
* Moving-target

* Applying in combination with existing approaches
* Theoretically fully compatible with ModelObfuscator
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Conclusions

* Demonstrated automatic & agnostic method to increase model
robustness to attack

 Attack success decreases of over 40% using tensor optimization

* Discussed avenues to expand on the preliminary work



