
TRYING TO MAKE METERPRETER
INTO AN ADVERSARIAL EXAMPLE

CAMLIS 2019

Andy Applebaum

@andyplayse4

© 2019 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 19-2305.



2

• About Me

• Researcher at MITRE1 (ATT&CK, CALDERA, security + AI, etc.)

• Prior research background: argumentation logic + security

• Recently developed a strong personal interest in attacks against AI

• This presentation: how do adversarial examples relate to classifying malware?

• Can we use RL to generate evasive versions of Meterpreter?

• Includes:

• A survey (crash course) of existing work

• A short experiment

• Analysis of experimental results

• Disclaimer: fun side project outside my comfort zone

OUTLINE

1:The author’s affiliation with The MITRE Corporation is provided for identification purposes only and is not intended to convey or imply MITRE’s concurrence with, or support for, the positions, opinions, or viewpoints expressed by the author.



INTRODUCTION

Before there were adversarial examples, there was machine learning…

3



MACHINE LEARNING HAS PUT 
HARD PROBLEMS IN REACH

• Natural language processing

• Translating text

• Identifying voice commands

• Computer vision
• Object/image recognition

• Object classification

• Game playing (reinforcement learning)

• Computer games (DotA, Starcraft)

• Board games (Go, Chess)

• Many, many more…
4

https://blog.statsbot.co/deep-learning-achievements-4c563e034257



5

• Applied across different “cyber” problems
• Malware classification

• Password guessing

• Network intrusion detection

• System log anomaly detection

• Across both academia and industry
• Both in startups and bigger players

• Sold across domains/not just detection

• Most security now has an AI + ML story
• (we’re here, after all!)

… including security!

https://www.cbinsights.com/research/cybersecurity-artificial-intelligence-startups-market-map/

Raff, Edward, et al. "An investigation of byte n-gram features for malware classification." Journal of Computer Virology and Hacking Techniques 14.1 (2018): 1-20.

Melicher, William, et al. "Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks." USENIX Security Symposium. 2016.

Sommer, Robin, and Vern Paxson. "Outside the closed world: On using machine learning for network intrusion detection." Security and Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010.

Du, Min, et al. "Deeplog: Anomaly detection and diagnosis from system logs through deep learning." Proceedings of the 2017 ACM SIGSAC. ACM, 2017.



IS MACHINE LEARNING A 
SILVER BULLET?

(no)

6

ES
ET

, h
tt

p
s:

//
i.c

rn
.c

o
m

/s
it

es
/d

ef
au

lt
/f

ile
s/

ck
fi

n
d

er
im

ag
es

/u
se

rf
ile

s/
im

ag
es

/c
rn

/c
u

st
o

m
/2

0
1

8
/E

SE
T_

3
6

0
_Q

31
8_

N
ex

tG
en

_W
h

it
ep

ap
er

.p
d

f



7

• 2013: “Intriguing Properties of Neural Networks,” Szegedy et al.

• Any good classifier should have some robustness and stability of its classifications

• Small adjustments to images shouldn’t significantly alter classifications; they should stay 
the same
• Yet: “…we find that applying an imperceptible non-random perturbation to a test image, it is possible to arbitrarily change the 

network’s prediction. These perturbations are found by optimizing the input to maximize the prediction error. We term the so 
perturbed examples ‘adversarial examples’.”

Enter: Adversarial Examples Against Neural Networks

• Left: Correctly classified sample image
• Middle: added noise
• Right: misclassified (ostrich) result



8

The Field Grows: Advancing Adversarial Examples

• Early construction approaches required full access to model/details (2015)
• Goodfellow et al.: “Explaining and Harnessing Adversarial Examples”

• Papernot et al.: “The Limitations of Deep Learning in Adversarial Settings”

• Over time, other construction techniques (same pre-reqs) emerge
• Moosavi-Dezfooli et al.: “DeepFool: a simple and accurate method to fool deep 

neural networks”

• Carlini and Wagner: “Towards evaluating the robustness of neural networks”

• Hiding the classifier makes it harder, but other techniques are effective
• Papernot et al.: “Practical Black-Box Attacks against Machine Learning”

• Querying the classifier for a label is enough!

• Other early defensive approaches show progress, but can still be bypassed
• Carlini and Wagner: “Adversarial Examples Are Not Easily Detected: Bypassing 

Ten Detection Methods” (2017)



9

• Can control for noise to remain adversarial when printed

• Kurakin et al.: “Adversarial Examples in the 
Physical World” (2016)

• Can modify real-world objects for misclassification

• Evtimov et al.: “Robust Physical-World Attacks on 
Deep Learning Models” (2017)

• Modify street signs for misclassification

• Brown et al.: “Adversarial Patch” (2018)

• Specific “patch” causes any image to be 
classified as a toaster

Bad News: Adversarial Examples Exist in the Real World Too

K
u

ra
ki

n
et

 a
l.

Ev
ti

m
o

v
et

 a
l.



10

• Defenses are not always intuitive

• Assuming a hidden classifier is not enough

• Attacks against one classifier frequently transfer 
to another, even if of different type

• Bottom line: if we’re using a classifier, we’re 
going to need to consider adversarial examples

Adversarial Examples: Not a One-Off Problem

Nicolas Papernot. “Adversarial Examples in Machine Learning.” Talk at USENIX Enigma 2017.Ian Goodfellow. “Adversarial Examples.” Deep Learning Summer School, 2015.



ADVERSARIAL EXAMPLES ARE KIND OF A BIG DEAL

11

But how do they relate to security?



12

• Security is a fundamentally different
domain than image recognition

• Hybrid approaches: static, dynamic, 
anomaly, signature, etc.

• Perturbations are not easy to apply

• Modifying files often corrupts them

• “rubbish class”

• How well does the concept of 
adversarial examples transfer over?

Adversarial Examples in Security Applications

Ian Goodfellow. “Adversarial Examples.” Deep Learning Summer School, 2015.



13

• Most research focuses on creating “adversarial malware” that bypasses ML classifiers

• Works across three different threat models: white, gray, and black-box

• White-Box: Grosse et al.: “Adversarial Perturbations Against Deep Neural Networks for Malware 
Classification.”

• Focused on Android malware – only adds features to avoid rubbish class problems

• Given full knowledge of model, computes best theoretical perturbation and applies it

• Gray-Box: Xu et al.: “Automatically Evading Classifiers: A Case Study on PDF Malware Classifiers.”

• Focused on PDFs – perturbs then detonates them to ensure they work to avoid rubbish class problems

• No knowledge of model, but can query the classifier with a sample and receive label + confidence

• Uses a genetic algorithm to figure out what modifications make the file evasive

• Black-Box: Hu and Tan: “Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN.”

• Focuses on PE files, but only works in feature space – modifies features and not files themselves

• No knowledge of model, but can query the classifier with the sample and receive a label

• Uses a generative network to modify features to make samples evasive

Reasonably Well!
Prior research in adversarial examples in security applications



14

• Works with real PE files, actually modifying the binary to 
add features; actions include:

• Adding an uncalled function to the import table

• Manipulating existing section names

• Packing or unpacking the file

• Appending bytes to extra space at the end of sections

• Use reinforcement learning to construct adversarial 
examples, obtaining only the label of tested samples

• Train/test on different malware classes: random malware 
(VirusShare), ransomware, Virut, and BrowseFox

• Mixed results: agent not significantly better than random, 
but scores strong on VirusTotal

Black-box Attacks: PE Malware (Files)
Anderson et al.: “Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning,” 2018.



EXPERIMENTING 
WITH ADVERSARIAL 
EXAMPLES
Testing the black-box scenario at home

15



16

• Anderson et al. released an OpenAI Gym environment to accompany their paper

• Allows you to “train” an agent via a series of games:
1. Each game is against a specific malware sample

2. During the agent’s turn, it can select a (pre-built) PE modification

3. Test the modified malware against the classifier

• If it’s now classified as benign, end the game and give a big reward

• Otherwise, keep playing the game until you run out of turns

• Games can be run black-box or (not published!) gray-box
• Black-box: no intermediary rewards, large reward if successfully evaded

• Gray-box: intermediary reward of shift-in-confidence, large on evasion

• Includes built in ACER agent to learn a policy and classifier implementing a gradient 
boosted decision tree trained on 50k benign + 50k malicious samples

• To run: we just need to bring the malware!

Endgame’s gym-malware package

gym
-m

alw
are actio

n
 sp

ace: h
ttp

s://gith
u

b
.co

m
/en

d
gam

ein
c/gym

-m
alw

are



17

• The idea: use the default Metasploit implant (Meterpreter) for testing + training

• Well known/detected: 49/68 on VirusTotal

• From a technical perspective, features include:

• Useful command shell features (e.g., tab completion)

• Running executables

• Sending/receiving files

• Taking screenshots

• Privilege escalation

• Command and control

• Q1: will the reinforcement learning technique be effective on a single malware type?

• Q2: can we perturb the detector so severely to make well-known malware evasive?

• Q3: how effective is gym-malware’s (not-reported-in-the-paper) gray-box agent?

Using gym-malware for research: Making Meterpreter Evasive



18

• The problem: gym-malware needs a large sample size to start with

• The solution: dynamically compile different variants of Meterpreter with msfvenom

• msfvenom: command-line tool to compile different implants/shells with a variety of 
parameters, including:

• Payload: different payloads (Meterpreter, shell, etc.)

• Format: payload type (shell code, executable, PHP file, etc.)

• Encoder: encode using specified encoder; can sometimes help evade AV

• Iterations: the number of times to apply the encoder

• Added-code: includes an additional PE file during compilation

• NOPsled size: include NOPs at the start of the payload

• Template: use an existing executable as a “template” for how to structure the output

Creating Meterpreter variants with msfvenom



19

• Wrote a script that generated a total of 4032 different Meterpreter variants

• All run on x86 Windows, output as a PE file, use reverse TCP, and write-back to 8.8.8.8

• Each variant selects a specific value from the table below for each column

msfvenom: Generated Meterpreter Variants

Encoder Iterations NOPs Added-Code Template

none none none none none

context_cpuid 3 10 fgdump fgdump

fnstenv_mov 10 100 nc nc

shikata_ga_nai 50 1000 mimikatz mimikatz

countdown PsExec PsExec

context_time whois whois

bloxor



20

• Detection threshold: 0.9 (default)

• Classifier returns a score between 0 (benign) and 1 (malicious)

• Detection threshold defines where the cutoff is (i.e., 0.9 and above are malicious)

• Samples classified as “benign” before mutation are thrown out

• Game length: 10 (default) and 20

• Game length controls the maximum number of mutations per malware sample

• Run two separate experiments, varying game length to see if it increases accuracy

• Total mutations: 20000 (default: 50000)

• Total number of training trials the agent can run before terminating training

• Less than default for quicker training, potentially at the cost of accuracy)

• Train + Test size: 2098 and 200

• 1734/4032 (43%) of initial variants classified as benign

Diving into gym-malware: notes on settings



21

• …largely underwhelming

• No significant difference between agents

• No significant different between game lengths

• Discovered variants largely uninteresting

• Average score slightly under threshold

• No difference between gray/black-box

• (only have results for length 20)

Results

Agent % Evaded:
10 Trials

% Evaded:
20 Trials

Random 17.1 18.9

Black-box 17.1 16.2

Gray-box 16.5 22.5

Agent # Evasive
Variants

Average Evasive
Variant Score

Black-box 645 0.87

Gray-box 709 0.87

% of test samples (200) that were successfully made evasive by agent/length

Statistics for evasive variants produced during training



POST-MORTEM

22

So what happened?



23

• Original paper did not claim that this 
technique always produces evasions!

• Table 2 shows no notable difference
between the ACER agent and random

• Instead:

• Can use discovered variants to retrain

• Can use evasions to foil AV vendors

• Still leaves questions about gray agent: 
wouldn’t we expect it to outperform the 
black-box agent?

Managing Expectations

2018: “Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning,” Anderson et al.



24

• Applied each modification to each variant 5 times

• Recorded average confidence score for those 5

• Did not chain any modifications – just one at a time

• Record overall average confidence change (+ / -)

• Summed over all variants

• For all changes, the modifications made the classifier 
more confident that the file was malicious!

• The gray agent’s results make more sense!

• But… why?! Potential explanations:

• Classifier trained on already obfuscated files

• Meterpreter already sufficiently optimized

• These obfuscations are, generally, ineffective

Looking at the actions: Are our modifications actually helping?

Modification Score Δ

Overlay_append + 0.00

Imports_append + 0.15

Section_rename + 0.05

Section_add + 0.07

Section_append + 0.05

Create_new_entry + 0.14

Remove_signature + 0.05

Remove_debug + 0.02

Upx_pack + 0.14

Upx_unpack + 0.00

Break_optional_header + 0.05



25

What actually helped: How we initially compiled Meterpreter

Encoder Score Iterations Score NOPs Score Added-Code Score Template Score

none 0.66 none 0.77 none 0.77 none 0.48 none 0.93

context_cupid 0.80 3 0.77 10 0.77 fgdump 0.93 fgdump 0.73

fnstenv_mov 0.78 10 0.77 100 0.77 nc 0.59 nc 0.84

shikata_ga_nai 0.80 50 0.77 1000 0.77 mimikatz 0.93 mimikatz 0.59

countdown 0.80 PsExec 0.87 PsExec 0.75

context_time 0.80 whois 0.85 whois 0.80

bloxor 0.80

• 47% of produced variants were already evasive
• Maybe compilation options are a better predictor?

• Idea: look at average score for each option
• Reproduced in table below

• Average score: 0.78

• Some interesting results:
• Using an encoder made it easier to detect

• Iterations/NOPs had no effect on confidence

• Adding code always made it look more like malware

• Using a template always helped evade

• Mimikatz template was best (!?)



CLOSING THOUGHTS

26

Anderson et al. “Evading Machine Learning Malware Detection.” 2017.



27

• Q1: will the reinforcement learning technique be effective on a single malware type?

• No – but the paper already showed that

• Q2: can we perturb the detector so severely to make well-known malware evasive?

• Not really – the malware was compiled to be evasive as-is

• Q3: how effective is gym-malware’s (not-reported-in-the-paper) gray-box agent?

• Surprisingly: not very, at least not here

• Takeaways:

• Understand the threat model you’re considering (and the prior work behind it!)

• Analyze your data before running your experiments

• Read the source material closely when forming hypotheses

• There’s lots of little things (e.g., settings, training data) that can feed into experiments

Summary and Lessons Learned



28

• Finish this experiment

• Show how action space/compilation options interact

• (try other compilation options…)

• Investigate the gray agent in more detail

• Still unanswered: can we use RL to train an agent to bypass the classifier?

• Black-box testing is good, but testing the gray agent seems more likely to good

• Other modifications: threshold, action space, training/testing data, classifier

• Can we smartly optimize the generation of adversarial example malware?

• Here, we “brute forced” the search space – but easy to envision a bigger one!

• Solves problems with making modifications that ensure functionality

For the Future



THANK YOU!

@andyplayse4

29


