
Next Generation Process
Emulation with Binee

Jared Nishikawa

Summary

Binary Emulation Environment

Binee is a new framework for binary analysis that we hope
will fit in alongside traditional tools for static and dynamic
analysis.

The Problem: getting information from binaries
Each sample contains some total set of information. Our goal is to extract as
much of it as possible

Time/Cost to analyze

Sa
m

pl
e

co
ve

ra
ge

Static

Dynamic

High coverage
Immediate discovery
Few features

Low coverage
Long discovery
Many features

Core Problems

1. Obfuscation hides much of the info

2. Anti-analysis is difficult to keep up with

3. Not all Malware is equal opportunity

Our Goal: Reduce cost of information extraction

1. Increase total number of features
extracted via static analysis

2. Reduce the cost of features
extracted via dynamic analysis

3. Ideally, do both of these at scale

Time/Cost to analyze

Sa
m

pl
e

Co
ve

ra
ge

Dynamic

Static +
Emulation

High coverage
Immediate discovery
Many features

Low coverage
Long discovery
Many features

Emulation

What did we use to emulate?

1. Unicorn CPU emulator
2. Capstone disassembler
3. Home-rolled PE file loader

Why emulation?

1. Dynamic analysis (like a Cuckoo sandbox) doesn’t scale well
2. WINE is closer to what we want, but...

Existing PE Emulators

● PyAna https://github.com/PyAna/PyAna
● Dutas https://github.com/dungtv543/Dutas
● Unicorn_pe https://github.com/hzqst/unicorn_pe
● Long list of other types of emulators

https://www.unicorn-engine.org/showcase/

https://github.com/PyAna/PyAna
https://github.com/dungtv543/Dutas
https://github.com/hzqst/unicorn_pe
https://www.unicorn-engine.org/showcase/

What are we adding/extending from current work?

● Mechanism for loading up a PE file with its dependencies
● Framework for defining function and API hooks
● Mock operating system

Binee

Where to start? Parse the PE and DLLs, then map
them into emulation memory...

kernel32:CreateFileA

What does the malware need in order to
continue proper execution?

emu.AddHook("", "CreateFileA", &Hook{

 Parameters: []string{},

 Fn: func(emu *WinEmulator, in *Instruction) bool {

 emu.Ticks += in.Args[0]

 return createFile(emu, in, false)(emu, in) //defined elsewhere

 },

})

Partial Hook, where the function itself is emulated within the DLL

emu.AddHook("", "GetCurrentThreadId", &Hook{Parameters: []string{}})

emu.AddHook("", "GetCurrentProcess", &Hook{Parameters: []string{}})

emu.AddHook("", "GetCurrentProcessId", &Hook{Parameters: []string{}})

Two types of hooks in Binee

Full Hook, where we define the implementation

Example: Entry point execution
./binee -v tests/ConsoleApplication1_x86.exe

[1] 0x0040142d: call 0x3f4

[1] 0x00401821: mov ecx, dword ptr [0x403000]

[1] 0x0040183b: call 0xffffff97

[1] 0x004017d2: push ebp

[1] 0x004017d3: mov ebp, esp

[1] 0x004017d5: sub esp, 0x14

[1] 0x004017d8: and dword ptr [ebp - 0xc], 0

[1] 0x004017dc: lea eax, [ebp - 0xc]

[1] 0x004017df: and dword ptr [ebp - 8], 0

[1] 0x004017e3: push eax

[1] 0x004017e4: call dword ptr [0x402014]

[1] 0x219690b0: F GetSystemTimeAsFileTime(lpSystemTimeAsFileTime = 0xb7feffe0) = 0xb7feffe0

[1] 0x004017ea: mov eax, dword ptr [ebp - 8]

[1] 0x004017ed: xor eax, dword ptr [ebp - 0xc]

[1] 0x004017f0: mov dword ptr [ebp - 4], eax

[1] 0x004017f3: call dword ptr [0x402018]

Example: Entry point execution
./binee -v malware.exe

[...output truncated...]

[1] 0x0042a496: push 0

[1] 0x0042a498: push 0x80

[1] 0x0042a49d: push 2

[1] 0x0042a49f: push 0

[1] 0x0042a4a1: push 1

[1] 0x0042a4a3: push 0xc0000000

[1] 0x0042a4a8: push esi

[1] 0x0042a4a9: call dword ptr [ebx + 0x10]

[1] 0x2421bb80: F CreateFileA(lpFileName = 'XVlBzgba', dwDesiredAccess = 0xc0000000, dwShareMode =

0x1, lpSecurityAttributes = 0x0, dwCreationDisposition = 0x2, dwFlagsAndAttributes = 0x80,

hTemplateFile = 0x0) = 0xa000164f

[1] 0x0042a4ac: mov dword ptr [ebp - 0xc], eax

[1] 0x0042a4af: cmp dword ptr [ebp - 0xc], -1

[1] 0x0042a4b3: je 0xc0

[...]

Filling out the Mock OS

OS Subsystems

● These can be implemented as needed to suit analyst needs
● Examples: file system, memory management, network stack

Configuration files defines OS environment quickly

● Yaml definitions to describe as much of the OS context as possible
○ Users, registry, language, locale, etc.

● All data gets loaded into the emulated userland memory

Now that we’ve done all this work, how well does
Binee perform?

Binee’s key features:
Capture more data...
At scale…
In the cloud.

Results

Binee Analysis
● Bypasses artificial delays
● Can be truncated after x seconds. (Observationally, 6 seconds)
● Only overhead is a container (scales well based on cluster size)

Data Extracted
● Captures dynamic imports
● Captures functions called in order.

Basic Classification Attempt

● We started with the EMBER dataset and model
● We appended the dynamic imports that Binee captured to

EMBER’s static imports.

Unfortunately, this did not measurably affect the model’s
precision or recall.

Some reasons why:
● We still need to work on incorporating other features.
● Binee is still very NEW, and we believe it has a lot of potential

Demos

● ecc<sha256> shows unpacking and wrote malicious dll to disk, loaded dll
and executed it

We’ve open-sourced this — What’s next

Development

● Increase fidelity with high quality hooks
● Networking stack and implementation, including hooks
● Add ELF (*nix) and Mach-O (macOS) support

Classification

● Different models?
● N-gram analysis on function calls

Thank you and come hack with us

https://github.com/carbonblack/binee

https://github.com/carbonblack/binee

