kipple: TOWARDS
ACCESSIBLE, ROBUST
MALWARE CLASSIFICATION

CAMLIS 2021
Andy Applebaum
@andyplayse4

https://github.com/aapplebaum/kipple

© 2021 The MITRE Corporation. All rights reserved. Approved for Public Release; Distribution Unlimited. Case Number 21-3439.

https://github.com/aapplebaum/kipple

0000 2

OUTLINE

* About Me
* Professional: researcher at MITRE? (ATT&CK®, CALDERA™, security/Al)
* Personal: chess National Master; 2018 DEF CON chess champion

DIAF[HO[2[3

&

HD H.
G | AallMelSe
|- 1G4

W RIERIS

* This presentation
* Building a robust malware classifier
* Making robustness more accessible for the community
* Lessons learned for others trying to break into the field

* Will be accompanied by:
* An open-source release (data, models, code/scripts)
* A whitepaper
* Long-form version of these slides

* Disclaimer: fun side project outside my comfort zone

1: The author's affiliation with The MITRE Corporation is provided for identification purposes only and is not intended to convey or imply MITRE's concurrence with, or support for, the positions, opinions, or viewpoints expressed by the author. ©2021 The MITRE Corporation. ALL RIGHTS RESERVED.

0000 3

Background: Static Malware Detection

Look for known indicators in a file (md5, strings)

Super quick, very reliable, low false positive

Struggles with new malware; high false negative

Find similarities between known bad files (ML!)

Can detect new malware with high(er) accuracy

Requires training data; can be slow; accuracy +/-

Background: Static Malware Detection

|
EMBER: gradient boosted decision tree, ~2500 features MalConv: Neural network, raw bytes -> learned features
A ROC curve of the resulting model is shown in Figure
5, and a distribution of scores for malicious and benign MalConv Byte n-grams
samples in the test set is shown in Figure 6. The ROC AUC
exceeds 0.99911. A threshold of 0.871 on the model score Test Set Accuracy AUC Accuracy AUC
results in less than 0.1% FP rate at a detection rate exceed- Group A 94.0 98.1 82.6 03 4
ing 92.99%. At less than 1% FP rate, the model exceeds GI‘OUp B 90.9 98.2 91.6 97.0
98.2% detection rate.

Anderson, Hyrum S., and Phil Roth. "Ember: an open dataset for training static pe malware machine learning Raff, Edward, et al. "Malware detection by eating a whole exe." Workshops at the Thirty-Second AAAI
models." arXiv preprint arXiv:1804.04637 (2018). Conference on Artificial Intelligence. 2018.

Evading ML-based Malware Detection with Adversarial Examples

|
& &0 i i B S
5 S =
2 : i - rard update l
S sof g =
% 50 : : 162 ~ Target Binary Rewriter
F : : a4 =} A Classifier os B
Z 4 - i 2 ulation e vasive Variants N Machine
= 0 A S i O o = \lization e Eie oun Machine Machine Evasive Action
o 3 i =32 : O P - Erasive el
z P 114 —
; : i (
=) a i a 4 ~ ax ion~ 25 + ‘
g 20f-= : oa ||
] { 412 M
.

w :‘ a content ‘

104 ¢ [LR TR . - Py - 1 hod. _}X

PDF Malware Windows Executables

Android Malware

e Perturb by modifying PDF file, e Perturb by modifying PE file,
adding new features preserving functionality

e Perturb by adding declared
features in Android manifest
file

compliant with PDF spec

2016: “Automatically Evading Classifiers: A Case 2020: "MAB-Malware: A Reinforcement
Study on PDF Malware Classifiers,” Xu et al. Learning Framework for Attacking Static
Malware Classifiers.” Song, Wei, et al.

2016: “Adversarial Perturbations Against Deep
Neural Networks for Malware Classification,”
Grosse et al.

KIPPLE

How do we make malware
detection more robust?

Motivation: 2021 Machine Learning Security Evasion Competition

* Public competition to build + attack malware classifiers
e Put on by Microsoft, CUJO Al, NVIDIA, VMRay, and MRG Effitas

* https://mlsec.io/

* Two tracks: attack and defend
* Defend: submit a classifier able to detect malware (PE files)
* Must satisfy no more than 1% false positive rate
* Must satisfy no more than 10% false negative rate
» Attack: make these 50 malware samples evade detection

* My goal: submit something
* Doesn’t have to be novel
* Doesn’t have to perform well
* Just needs to be in!

LSEC ﬂ i L
Machine Learning Security Evasion Competition

sjw//:sdny

/o129

Approach: Adversarial Retraining + Portfolio of Models

e Obtain a dataset of normal malware

e Using original malware, build a set of adversarial malware

e Train an initial model on only the original malware for baselining

e Train multiple models/portfolios using the original + adversarial malware

e Choose the option with best performance

0000 9

Hypotheses — what do we hope to see?

Question 1 e Can we build a classifier that’s robust to adversarial
examples without sacrificing normal accuracy?

Question 2 e |s it better to use a single adversarially-retrained model or a
portfolio of models?

Question 3 e When training on adversarial examples, is it better to train
on all of them or only the evasive ones?

e |s it worthwhile to write a classifier that discriminates

Question 4 between normal PE files (malware and benign) versus

adversarially-generated ones?

OBTAINING DATA

e Binaries

* Feature vectors

Gathering Malware

Started with EMBER data (feature vectors)

* https://github.com/elastic/ember
* 400K malware; 200K unknown; 400K benign

Obtained random malware from VirusShare
e https://virusshare.com/
* Rate limited so not a lot (7662)

Obtained random malware from 2020 SoRel set
e https://github.com/sophos-ai/SOREL-20M
* Rate + hard drive space limited so only ~32K

Personal computer for benign binaries
e 2525 in total, various PE files downloaded over 15yrs

Obtained MLSEC

e 150 “normal” malware samples (2019-2021)
* 544 “adversarial” samples submitted in 2019

Source Format Label Count
EMBER Feature Vector Malware 300000
VirusShare Binary Malware 7662
SoRelL Binary Malware 31914
EMBER Feature Vector Unknown 200000
EMBER Feature Vector Benign 300000
Local Binary Benign 2191
Training Data
Source Format Label Count
EMBER Feature Vector Malware 100000
MLSEC Binary Malware 150
EMBER Feature Vector Benign 100000
Local Binary Benign 379
MLSEC Binary Adversarial 544

Test Data

https://github.com/elastic/ember
https://virusshare.com/
https://github.com/sophos-ai/SOREL-20M

GENERATING
ADVERSARIAL MALWARE

Three main approaches:

* Functionality-preserving changes
* Malware RL (small changes)
* SecML Malware (big changes)

* New malware
* msfvenom

Training: Total Adversarial Malware Generated

13

131,169

/'

Source | Generation Technique | Total
SoRelL MalwareRL 37553
SoRelL GAMMA 5167
SoRel DOS Manipulation 2590
SoRelL Small Pad 225

SoRelL Large Pad 277

VirusShare MalwareRL 24581
VirusShare GAMMA 5629
VirusShare DOS Manipulation 2814
VirusShare Small Pad 2347
VirusShare Large Pad 2815
msfvenom No Added Code 5884
msfvenom Added SoRel Malware 33633
msfvenom Added VirusShare Malware 7614

45,812

J\

— 38,186

47,171

Testing/Avoiding Duplication: MLSEC Adversarial Samples

14

e MLSEC Included Samples (“MLSEC 2019 Adversarial”)
e Attacker submissions from MLSEC 2019 — 544 in total

 MLSEC Malware RL (“MLSEC MRL")

* Ran Malware RL on the 150 normal MLSEC malware samples to generate 1433 new instances

* MLSEC SecML Malware (“MLSEC SecML")

* Ran SecML Malware to generate 746 new instances from the 150 MLSEC normal malware samples

Lessons Learned From Gathering + Generating Data

15

s Have a lot of disk space

e Kipple was initially built on a small (<30GB) Linux VM on my personal PC
e Space became a deciding factor to download models, features, samples
e Space became a deciding factor when generating new samples

e Eventually resized VM to 300GB — but would be easier to start here!

s Dedicate enough time

e When downloading samples: often those downloads are rate-limited

e Processes were run overnight, with multiple instances at a time
e A cloud deployment would’ve saved time + helped space issues

e When generating new samples: generation can be extremely time consuming

Building the Initial Model

17

Follow EMBER model training code
Use gradient boosted decision tree
Train only on EMBER train data

Find threshold to set FP rate to 1%

Performs well on benign (EMBER, local)
Performs well on EMBER, VirusShare, MLSEC

Only 90.3% accuracy for SoRelL malware

Source ‘ Label ‘ Accuracy
EMBER Test Benign 99.0%
Local Test Benign 97.6%
EMBER Test Malicious 96.5%
VirusShare Malicious 99.9%
SoRelL Malicious 90.3%
MLSEC Malicious 99.3%

Evaluating the Initial Model: Adversarial Malware

Source | Generation Technique | Accuracy

Struggles with MLSEC 2019 adversarial data and MLSEC 2019 i 53.8%
SoRel MalwareRL + GAMMA samples SoRoL MalwareRL £8.9%

SoReL GAMMA 59.6%
DOS Manipulation 89.2%

Small Pad 95.1%

Large Pad 93.9%

Can detect padding + DOS manipulation

VirusShare variants looking easier to detect VirusShare MalwareRL e

* Likely due to data leaks — VirusShare samples pulled Virusshare GAMMA 80.8%
from original EMBER training data VirusShare DOS Manipulation 99.6%

VirusShare Small Pad 99.6%

VirusShare Large Pad 99.6%
msfvenom lowest accuracy msfvenom No Added Code 10.9%

* As expected, adding code made it easier to detect msfvenom Added SoRel. 22.7%
* VirusShare surprisingly not easier msfvenom Added VirusShare 24.3%

Lessons Learned From Generating an Initial Model

19

s Keep good records

e Embarrassingly, we lost the model parameters used for the initial model!
e Likely followed EMBER source, but remained an issue throughout development

Separate training and testing data

e VirusShare variants proved to be derived from our training data
e Make sure you track where your data is coming from
e Make sure to generate test data from a different source as your train data

ADVANCED MODELS

* Retraining

Building and Testing a Retrained Model

21

* Retrain model with new adversarial samples
Score original EMBER benignware as benign

Score original EMBER malware as malware
Score new adversarial variants as malware
Discard EMBER unclassified instances

e Select a threshold that ensures 1% FP rate

* Does pretty well on all categories

Source Label ‘ Accuracy
Local Test Benign 78.0%
EMBER Test Malicious 94.4%
MLSEC Malicious 96.7%
MLSEC 2019 Adversarial 76.7%
MLSEC MRL Adversarial 84.0%
MLSEC SecML Adversarial 86.6%

* Not perfect on everything: but an improvement

Initial Model vs. Retrained Model

Source Label ‘ Accuracy Source Label Accuracy
Local Test Benign 97.6% Local Test Benign

EMBER Test Malicious 96.5% EMBER Test Malicious

MLSEC Malicious 99.3% MLSEC Malicious

MLSEC 2019 Adversarial MLSEC 2019 Adversarial

MLSEC MRL Adversarial MLSEC MRL Adversarial
MLSEC SecML Adversarial MLSEC SecML Adversarial

Initial Model Retrained Model

ADVANCED MODELS

e Building a portfolio

0000 24

Portfolio Options

* ldea: combine multiple models each focused on classifying the adversarial malware

* Two primary paradigms, both treating only the adversarial samples as malware
* All. Here, all EMBER data (malware and unknowns) is treated as benign (i.e.: normal PE vs. adversarial)
* Benign. Here, only benign EMBER data is considered as benign; malware and unknown discarded

* Four model variations for which adversarial samples to include:
* Adversarial. Includes all adversarial malware instances

* Variants. Includes only MalwareRL and SecML Malware instances
* msf. Includes only msfvenom instances

* Undetected. Includes only msfvenom instances not detected by the initial model

* To build a portfolio, select a set of models to include and find cutoffs matching 1% FP
* Use success on MLSEC Adversarial + EMBER Malware to break ties

Individual Model Results — 1% False Positive Rate

25

Individual Model

Local
Benign

EMBER

W EUETLS

MLSEC

W EUETLS

MLSEC ‘19
Adversarial

MLSEC

Malware RL

Adversarial (All) 41.7% 4.4% 16.0% 52.6% 60.3% 47.9%
Adversarial (Benign) 40.1% 53.8% 77.3% 86.6% 84.3% 88.6%
Variants (All) 95.3% 9.3% 43.3% 78.3% 89.9% 71.6%
Variants (Benign) 95.0% 60.6% 87.3% 88.2% 91.0% 94.4%
Msf (All) 29.3% 0.4% 4.0% 8.1% 4.9% 15.8%
Msf (Benign) 24.5% 6.7% 50.7% 20.4% 35.5% 59.4%
Undetected (All) 21.6% 0.4% 46.7% 15.6% 39.4% 55.0%
Undetected (Benign) 72.3% 0.6% 4.0% 0.6% 2.6% 8.7%

Individual Model Results — 1% False Positive Rate

26

Individual Model

Local

Benign

EMBER
Malware

MLSEC
Malware

MLSEC ‘19
Adversarial

MLSEC

Malware RL

Msf (All)
Msf (Benign)

Adversarial (All) 41.7% 4.4% 16.0% 52.6% 60.3% 47.9%
Adversarial (Benign) 40.1% 53.8% 77.3% 86.6% 84.3% 88.6%
Variants (All) 95.3% 9.3% 43.3% 78.3% 89.9% 71.6%
Variants (Benign) 95.0% 60.6% 87.3% 88.2% 91.0% 94.4%

Undetected (All)

Undetected (Benign)

* Variants performs best

* msf/undetected struggle to be useful

* Benign usually outperforms All...

Individual Model Results — 1% False Positive Rate

MLSEC ‘19 MLSEC
Adversarial Malware RL

Local EMBER MLSEC
Benign Malware | Malware

Individual Model

Adversarial (All) 41.7% 4.4% 16.0% 52.6% 60.3% 47.9%
Adversarial (Benign) 40.1% 53.8% 77.3% 86.6% 84.3% 88.6%
Variants (All) 95.3% 9.3% 43.3% 78.3% 89.9% 71.6%
Variants (Benign) 95.0% 60.6% 87.3% 88.2% 91.0% 94.4%
Msf (All) 29.3% 0.4% 4.0% 8.1% 4.9% 15.8%
Msf (Benign) 24.5% 6.7% 50.7% 20.4% 35.5% 59.4%
Undetected (All) 21.6% 0.4% 46.7% 15.6% 39.4% 55.0%
Undetected (Benign) 72.3% 0.6% 4.0% 0.6% 2.6% 8.7%

* Variants performs best

* msf/undetected struggle to be useful

* Benign usually outperforms All...
* Undetected All does better than Benign

0000 28

Portfolio Results

Local EMBER MLSEC MLSEC ‘19 MLSEC

Rloce S ek 2 AELEIE Benign Malware | Malware Adversarial | Malware RL

Initial - - 97.6% | 96.5% 99.3% 53.9% 56.6% 76.4%
Retrained | - - 78.0% | 94.4% 96.7% 76.7% 84.0% 86.6%
Initial Adversarial (All) - 41.7% 96.0% 100.0% 83.1% 66.4% 94.6%
Initial Adversarial (Benign) | - 41.4% 95.7% 100.0% 86.4% 70.6% 96.2%
Initial Variants (All) Msf (All) 37.5% 92.5% 92.0% 89.3% 84.9% 95.0%
Initial Variants (All) Msf (Benign) 28.5% 93.8% 98.0% 89.9% 84.2% 95.7%
Initial Variants (All) Undetected (All) 28.8% 92.5% 93.3% 91.7% 89.0% 95.9%
Initial Variants (All) Undetected (Benign) | 70.5% 92.7% 92.0% 89.3% 85.2% 95.0%
Initial Variants (Benign) Msf (All) 37.5% 95.6% 100% 88.6% 78.3% 95.0%
Initial Variants (Benign) Msf (Benign) 60.7% 93.5% 95.3% 87.9% 81.1% 95.2%
Initial Variants (Benign) Undetected (All) 28.8% 95.6% 100% 91.0% 84.5% 99.3%
Initial Variants (Benign) Undetected (Benign) | 70.5% 95.7% 100% 88.6% 78.8% 97.2%

Portfolio Results

29

sl Bles Ll AELEIE BLeor::iagIn I\I/EI:\/IIVE:IEI:e Ml\::-vs\‘;cr:e ::Ijl\-lif‘:alrligl Mal\lnwL:E: RL ‘

Initial - 99.3%

Retrained | - 96.7%

Initial Adversarial (All) 100.0%

Initial Adversarial (Benign) 100.0%

Initial Variants (All) Msf (All) 37.5% 92.5% 92.0% 89.3% 84.9% 95.0%
Initial Variants (All) Msf (Benign) 28.5% 93.8% 98.0% 89.9% 84.2% 95.7%
Initial Variants (All) Undetected (All) 28.8% 92.5% 93.3% 91.7% 89.0% 95.9%
Initial Variants (All) Undetected (Benign) | 70.5% 92.7% 92.0% 89.3% 85.2% 95.0%
Initial Variants (Benign) Msf (All) 37.5% 95.6% 100% 88.6% 78.3% 95.0%
Initial Variants (Benign) Msf (Benign) 60.7% 93.5% 95.3% 87.9% 81.1% 95.2%
Initial Variants (Benign) Undetected (All) 28.8% 95.6% 100% 91.0% 84.5% 99.3%
Initial Variants (Benign) Undetected (Benign) | 70.5% 95.7% 100% 88.6% 78.8% 97.2%

Portfolio Results

30

sl Bles Ll AELEIE BLeor::iagIn I\Ilslglllv?lil:e Ml\::-vs\‘licr:e ::Ijl\-lsef‘:alrligl Mal\lnwL:E: RL

Initial - - 97.6% | 96.5% 99.3% 53.9% 56.6% 76.4%
Retrained | - - 78.0% 94.4% 96.7% 76.7% 84.0% 86.6%
Initial Adversarial (All) - 41.7% 96.0% 100.0% 83.1% 66.4% 94.6%
Initial Adversarial (Benign) | - 41.4% 95.7% 100.0% 86.4% 70.6% 96.2%
Initial Variants (All) Msf (All) 37.5% 92.5% 92.0% 89.3% 84.9% 95.0%
Initial Variants (All) Msf (Benign) 28.5% 93.8% 98.0% 89.9% 84.2% 95.7%

Initial

Initial

Variants (All)
Variants (All)

Undetected (All)

Undetected (Benign)

Initial Variants (Benign) Msf (All) 37.5% 95.6% 100% 88.6% 78.3% 95.0%
Initial Variants (Benign) Msf (Benign) 60.7% 93.5% 95.3% 87.9% 81.1% 95.2%
Initial Variants (Benign) Undetected (All) 28.8% 95.6% 100% 91.0% 84.5% 99.3%
Initial Variants (Benign) Undetected (Benign) | 70.5% 95.7% 100% 88.6% 78.8% 97.2%

0000 31

Portfolio Results

Local EMBER MLSEC MLSEC ‘19 MLSEC

Llocs S e AELEIE Benign Malware | Malware Adversarial | Malware RL

Initial - - 97.6% | 96.5% 99.3% 53.9% 56.6% 76.4%
Retrained | - - 78.0% 94.4% 96.7% 76.7% 84.0% 86.6%
Initial Adversarial (All) - 41.7% 96.0% 100.0% 83.1% 66.4% 94.6%
Initial Adversarial (Benign) | - 41.4% 95.7% 100.0% 86.4% 70.6% 96.2%
Initial Variants (All) Msf (All) 37.5% 92.5% 92.0% 89.3% 84.9% 95.0%
Initial Variants (All) Msf (Benign) 28.5% 93.8% 98.0% 89.9% 84.2% 95.7%

Initial Variants (All) Undetected (All)
Initial Variants (All) Undetected (Benign)
Initial Variants (Benign) Msf (All)

Initial Variants (Benign) Msf (Benign)

Initial Variants (Benign) Undetected (All)

Initial Variants (Benign) Undetected (Benign)

0000 32

Portfolio Results

Local EMBER MLSEC MLSEC ‘19 MLSEC

Rloce S ek 2 AELEIE Benign Malware | Malware Adversarial | Malware RL

Initial - - 97.6% 96.5% 99.3% 53.9% 56.6% 76.4%
Retrained | - - 78.0% 94.4% 96.7% 76.7% 84.0% 86.6%
Initial Adversarial (All) - 41.7% 96.0% 100.0% 83.1% 66.4% 94.6%
Initial Adversarial (Benign) | - 41.4% 95.7% 100.0% 86.4% 70.6% 96.2%

Initial Variants (All) Msf (All)

Initial Variants (All) Msf (Benign)

Initial Variants (All) Undetected (All)
Initial Variants (All) Undetected (Benign)
Initial Variants (Benign) Msf (All)

Initial Variants (Benign) Msf (Benign)

Initial Variants (Benign) Undetected (All) 28.8% 95.6% 100% 91.0% 84.5% 99.3%
Initial Variants (Benign) Undetected (Benign) | 70.5% 95.7% 100% 88.6% 78.8% 97.2%

Portfolio Results — what we used for kipple

33

Local EMBER MLSE MLSEC ‘1 MLSE MLSE
Rloce S ek 2 AELEIE B:r::iagn Malware Malvsva(r:e Advser:arigl Malw:r: RL Sec?VIE
Initial - - 97.6% | 96.5% 99.3% 53.9% 56.6% 76.4%
Retrained | - - 78.0% | 94.4% 96.7% 76.7% 84.0% 86.6%
Initial Adversarial (All) - 41.7% 96.0% 100.0% 83.1% 66.4% 94.6%
Initial Adversarial (Benign) | - 41.4% 95.7% 100.0% 86.4% 70.6% 96.2%
Initial Variants (All) Msf (All) 37.5% 92.5% 92.0% 89.3% 84.9% 95.0%
Initial Variants (All) Msf (Benign) 28.5% 93.8% 98.0% 89.9% 84.2% 95.7%
Initial Variants (All) Undetected (All) 28.8% 92.5% 93.3% 91.7% 89.0% 95.9%
Initial Variants (All) Undetected (Benign) | 70.5% 92.7% 92.0% 89.3% 85.2% 95.0%
Initial Variants (Benign) Msf (All) 37.5% 95.6% 100% 88.6% 78.3% 95.0%
Initial Variants (Benign) Msf (Benign) 60.7% 93.5% 95.3% 87.9% 81.1% 95.2%
Initial Variants (Benign) Undetected (All) 28.8% 95.6% 100% 91.0% 84.5% 99.3%
Initial Variants (Benign) Undetected (Benign) | 70.5% 95.7% 100% 88.6% 78.8% 97.2%

RESULTS

How did kipple do?

MLSEC Home Phishing v Malware v Defenderv & User Management Rules O README Logout

Defender scoreboard. Lists the total number of times an ML model was bypassed. The smaller the number, the better the result.

Please note, only submissions involving ZIP uploads are counted here, fast APl ML checks are not.

List
ML "secret" ML "submission 3" ML "scanner_only_v1" ML "model2_thresh90" ML "A1" amsqr ML "kipple"
fmbuylrn bypassed qghdyuvnv bypassed tigwdpam bypassed vftuemab bypassed bypassed rwchsfde bypassed
162 1840 714 734 193 231
|
KIPPLE: 3RP PLACE FINISHER IN MLSEC 2021
0000

Was in first place up until 48 hours before!

(final submission included stateful correlation, higher thresholds, and built-in MD5 signaturing for benignware)

35

CRITICAL ANALYSIS:
AREAS OF IMPROVEMENT

* Kipple has a low false positive rate

* Kipple still misses Malware RL-style attacks

e Given enough time, can evade with random decisions
* Frameworks like MAB-malware proved (+/-) successful
https://github.com/weisong-ucr/MAB-malware

* More importantly: kipple lacked knowledge of
traditional, non-ML evasion techniques

* Crypters, packers, etc.

* Multiple off-the-shelf tools were able to bypass
kipple’s detection

36

https://github.com/weisong-ucr/MAB-malware

Individual Model Results — 0.01% False Positive Rate

37

Individual Model EMBER MELSEC MLSEC
Malware 2019-All MalwareRL
Initial 0.0% 0.0% 0.0%
Retrained 71.2% 36.0% 72.2%
Adversarial (All) 4.0% 40.7% 91.2%
Adversarial (Benign) 10.8% 40.1% 91.5%
Variants (All) 3.8% 40.4% 91.4%
Variants (Benign) 11.1% 42.9% 91.4%
Msf (All) 0.0% 0.0% 0.0%
Msf (Benign) 0.3% 0.2% 1.2%
Undetected (All) 0.0% 4.2% 5.7%
Undetected (Benign) 0.2% 0.7% 0.6%

CLOSING THOUGHTS
AND DISCUSSION

Kipple might not be solving the
“robustness” problem — but we think this
research still helps

Major Conclusions

39

e Can we build a classifier that’s robust to adversarial
examples without sacrificing normal accuracy?

e |s it better to use adversarial retraining or a
portfolio of models?

e When training on adversarial examples, is it better
to train on only those that bypassed classification?

e |s it worthwhile to write a classifier that
discriminates between normal PE files (malware
and benign) versus adversarially-generated ones?

B
} Portfolios look better

From the msf/undetected
case — bypass is better!

Surprisingly — it’s not

entirely clear!

LESSONS LEARNED

S

A S5
1111

Make sure you have space

Make sure you dedicate enough time

Keep good records

Ensure training and testing data are separate

40

DISCUSSION QUESTIONS

* Does a bigger ensemble targeting
traditional obfuscation perform better?

* Can we generate more adversarial
malware in a way that’s time-efficient?

* Would our models perform better
trained on only evasive samples?

* How can we tweak + optimize the
existing adversarial malware
frameworks?

THANK YOU

, @andyplaysed

% https://github.com/aapplebaum/kipple

42

44

Attacking the Competition

* Attempted to attack the two frontrunners (secret and amsqr) to “defend” kipple
 If we can score against these two, we’ll make kipple seem relatively better

* Tried for model stealing attack
* Threw benign + adversarial samples at each model Accuracy secret amsqr
e 20K in total! ~2500 benign, ~14500 Malware RL, ~4000 GAMMA Benign 38.3% | 89.3%
* Trained a GBDT matching the results
Malware RL | 95.3% | 96.5%

e Evaded our trained model
GAMMA |97.9% | 90.6%

* Didn’t really work — subject of future talk...

* But did profile the two other models reasonably well
* Admittedly hard to compare results due to stateful detection

Malware RL

45

* Open source: https://github.com/bfilar/malware rl

* OpenAl gym extension to train reinforcement
learning agents to create evasive malware
* Builds on older gym-malware work
* Large action space — each functionality-preserving
* Idea to train agent to know which sequence of actions to

apply to be evasive

* Comes with:
 Random agent

* Pre-trained MalConv and EMBER models

* Our usage:

* Use local benign “train” samples as labeled benign
* Use random agent to generate MalConv-evading samples

Action Space

ACTION_TABLE = {

'modify_machine_type': 'modify_machine_type’,

'pad_overlay': 'pad_overlay',

'append_benign_data_overlay': 'append_benign_data_overlay’,
'append_benign_binary_overlay': 'append_benign_binary_overlay',
'add_bytes_to_section_cave': 'add_bytes_to_section_cave',
'add_section_strings': 'add_section_strings',
'add_section_benign_data': 'add_section_benign_data',
'add_strings_to_overlay': 'add_strings_to_overlay',

'add_imports': 'add_imports',

'rename_section': 'rename_section',

'remove_debug': 'remove_debug’,

'modify_optional_header': 'modify_optional_header’,

'modify_timestamp': 'modify_timestamp',

'break_optional_header_checksum':
'upx_unpack': 'upx_unpack',
'upx_pack': "upx_pack"

'break_optional_header_checksum’,

Table 1: Evasion Rate against Ember Holdout Dataset*

gym agent evasion_rate = avg_ep_len
ember RandomAgent = 89.2% 8.2
malconv RandomAgent = 88.5% 16.33

https://github.com/bfilar/malware_rl

SecML Malware

* Extension of SecML; library for executing a variety of white-box and black-box attacks
against ML classifiers

* Includes multiple built-in attack types, as well as a pre-trained MalConv instance

* Open source: https://github.com/pralab/secml| malware

* Our usage:

* Leverage local “benign” train samples as input to attacks
* Run several attack types to generate (not necessarily evasive) samples and save them

MalConv original DR: 100%

White-box attacks Black-box attacks

Partial DOS Extend Shift Padding Partial DOS Extend Shift Padding GAMMA-padding
1 iter. 60% 5% 87.5% 85% 10 queries 69% 34% 80% 100% 14%
25 iter. 28% 5% 80% 45% 250 queries 56% 25% 79% 100% 13%
50 iter. 28% 5% 80% 45% 500 queries 42% 10% 65% 100% 12%

Table 2: Detection Rates (DRs) of MalConv against white-box/black-box attacks, opti-
mized with an increasing number of iterations/queries.

‘ Demetrio, Luca, and Battista Biggio. "Secml-malware: A Python library for adversarial robustness evaluation of windows malware classifiers." arXiv preprint arXiv:2104.12848 (2021). ‘

https://github.com/pralab/secml_malware

msfvenom

* Alternative approach: use msfvenom to
compile new “malware” (i.e., implants)

* Randomly choose options:
* Architecture (x86, x64)
* Encoder (none, xor, xor_dynamic, shikata_ga_nai)
* Encryption (none, aes256, base64, rc4, xor)

% TRYING TO MAKE METERPRETER
INTO AN ADVERSARIAL EXAMPLE

CAMLIS 2019
N\ Andy Applebaum
@andyplayse4

* Payload (shell, meterpreter)

e 00
* Tem P late (local ben Ign train data) What actually helped: How we initially compiled Meterpreter
. * 47% of procEd variants were already evasive * Some interesting results:
L Ad d e d CO d e (n O n e’ VI r u SS h a re’ S O Re L) * Maybe compilation options are a better predictor? . Using.an encoder made it easier to de_tecl
+ Idea: look at average score for each option * Iterations/NOPs had no effect on confidence
« Reproduced in table below * Adding code always made it look more like malware
. E * Usi t late al helped evade
e Our usa ge: o i e ey
Encoder Score lIterations | Score NOPs | Score Added-Code | Score Template ‘ Score
M M M : M none 0.66 none 0.77 none 0.77 none 0.48 none 0.93
* Save all, marking if an instance is evasive 7 5 B 5 v 5 B L
. fnstenv_mov 0.78 10 0.77 100 0.77 nc 0.59 nc 0.84
L] Re CO rd w h IC h a d d e d (o{0) d e ty p eC h osen shikata_ga_nai 0.80 50 077 | 1000 0.77 mimikatz 093 | mimikatz 0.59
countdown 0.80 PsExec 0.87 PsExec 0.75
context_time 0.80 whois 0.85 whois 0.80
bloxor 0.80

Teaser: Differential Privacy

Not quite...

