

Automatic Prioritization of Incident Reports Chae Clark chae.clark@twosixtech.com

TWOSIXTECH.COM

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Prioritizing Network Incidents

Prioritizing and Explaining

We develop a Neural Network Regressor to prioritize network incidents

We employ a self-attention layer to produce explainable predictions

Important distinction is that we are NOT "detecting" malicious activity

Prioritizing Network Incidents

Prioritizing and Explaining

We develop a Neural Network Regressor to prioritize network incidents

We employ a self-attention layer to produce explainable predictions

Important distinction is that we are NOT "detecting" malicious activity

Prioritizing Network Incidents

Prioritizing and Explaining

We develop a Neural Network Regressor to prioritize network incidents

We employ a self-attention layer to produce explainable predictions

Important distinction is that we are NOT "detecting" malicious activity

Historical Incident Reports

Training Data

We have access to over 1.5 decades of network incidents.

These (roughly) 30,000 incidents cover several enterprise networks.

They contain a severity designation made by human analysts (along with other metadata)

Input Features

We extract 8 features from the reports

TTP - the categorized attack as detailed in the MITRE framework Connection Success - whether the intrusion/exfil/etc. was successful Duration - the amount of time the attack was active on the system Src./Dst. Role - role within the enterprise (admin, server, external, etc.) Service - resource used during the alert (http, dns, ssh, etc.) Location - the physical or virtual location targeted in the intrusion Description - the full textual description of the event

Prioritizing and Explaining

We develop a Neural Network Regressor to prioritize network incidents

We employ a self-attention layer to produce explainable predictions

Prioritizing and Explaining

We develop a Neural Network Regressor to prioritize network incidents

We employ a self-attention layer to produce explainable predictions

Prioritizing and Explaining

We develop a Neural Network Regressor to prioritize network incidents

We employ a self-attention layer to produce explainable predictions

Prioritizing and Explaining

We develop a Neural Network Regressor to prioritize network incidents

We employ a self-attention layer to produce explainable predictions

Experimental Setup

Training Parameters

We balance the data set by sub-sampling to the smallest class:

- Medium Severity (~ 750)
- Critical Severity (~ 750)

We then retain 80% of the balanced set for training and use all other reports as the evaluation set.

Data Distribution

- Balanced training data
- Model still achieves true data distribution on test set

Interpretation

- We probably have a bit of overfitting here
- We achieve reasonable F1 results on the evaluation set (with a caveat)

Training Set Metrics						
	Precision	F1-Score	Support			
Low (1)	1.0	1.0	1.0	580		
Medium (2)	0.99	0.99	0.99	580		
High (3)	1.0	0.99	0.99	580		
Critical (4)	1.0	1.0	1.0	580		
Accuracy			1.0	2320		
Macro Avg.	1.0	1.0	1.0	2320		
Weighted Avg.	1.0	1.0	1.0	2320		

Interpretation

- We probably have a bit of overfitting here
- We achieve reasonable F1 results on the evaluation set (with a caveat)

Training Set Metrics						
	Precision	Recall	F1-Score	Support		
Low (1)	1.0	1.0	1.0	580		
Medium (2)	0.99	0.99	0.99	580		
High (3)	1.0	0.99	0.99	580		
Critical (4)	1.0	1.0	1.0	580		
Accuracy			1.0	2320		
Macro Avg.	1.0	1.0	1.0	2320		
Weighted Avg.	1.0	1.0	1.0	2320		

Interpretation

- We probably have a bit of overfitting here
- We achieve reasonable F1 results on the evaluation set (with a caveat)

Testing Set Metrics						
Precision Recall F1-Score		F1-Score	Support			
Low (1)	1.0	1.0	1.0	26066		
Medium (2)	0.33	0.99	0.49	150		
High (3)	1.0	0.95	0.96	1530		
Critical (4)	0.6	1.0	0.8	145		
Accuracy			1.0	27891		
Macro Avg.	0.7	1.0	0.8	27891		
Weighted Avg.	1.0	1.0	1.0	27891		

Interpretation

We probably have a bit of overfitting here

We achieve reasonable F1 results on the evaluation set (with a caveat)

Testing Set Metrics						
	Precision	Recall	F1-Score	Support		
Low (1)	1.0	1.0	1.0	26066		
Medium (2)	0.33	0.99	0.49	150		
High (3)	1.0	0.95	0.96	1530		
Critical (4)	0.6	1.0	0.8	145		
Accuracy			1.0	27891		
Macro Avg.	0.7	1.0	0.8	27891		
Weighted Avg.	. 1.0	1.0	1.0	27891		

Interpretation

We probably have a bit of overfitting here

We achieve reasonable F1 results on the evaluation set (with a caveat)

Testing Set Metrics						
	Precision	Recall	F1-Score	Support		
Low (1)	1.0	1.0	1.0	26066		
Medium (2)	0.33	0.99	0.49	150		
High (3)	1.0	0.95	0.96	1530		
Critical (4)	0.6	1.0	0.8	145		
Accuracy			1.0	27891		
Macro Avg.	0.7	1.0	0.8	27891		
Weighted Avg.	1.0	1.0	1.0	27891		

Attention

Interesting Observations

Duration is "never" important, but that's a fault of the humans

Whether the connection was successful or blocked is less important for higher severity reports

This is also the case for the source IP/Host role

For the critical incidents "only" the type of attack is important

Attention Weights (Median %) [Test Data]							
	Overall	Low (1)	Medium (2)	High (3)	Critical (4)		
Description	0.1	0.1	0.4	0.2	0.1		
Successful	7.6	7.8	8.5	3.9	1.2		
Duration	0	0	0	0	0		
Source Role	90.5	90.8	55.4	30.2	2.6		
Target Role	0.1	0.1	1.8	1.5	0		
Service	0.1	0.1	0.4	0.2	0		
Location	0.1	0.1	0.2	0.1	0		
ТТР	0.5	0.4	32.8	63.3	94.9		
External	0	0	0.2	0.1	0		

Attention

Interesting Observations

Duration is "never" important, but that's a fault of the humans

Whether the connection was successful or blocked is less important for higher severity reports

This is also the case for the source IP/Host role

For the critical incidents "only" the type of attack is important

Attention Weights (Median %) [Test Data]							
	Overall	Low (1)	Medium (2)	High (3)	Critical (4)		
Description	0.1	0.1	0.4	0.2	0.1		
Successful	7.6	7.8	8.5	3.9	1.2		
Duration	0	0	0	0	0		
Source Role	90.5	90.8	55.4	30.2	2.6		
Target Role	0.1	0.1	1.8	1.5	0		
Service	0.1	0.1	0.4	0.2	0		
Location	0.1	0.1	0.2	0.1	0		
ТТР	0.5	0.4	32.8	63.3	94.9		
External	0	0	0.2	0.1	0		

Attention

Interesting Observations

Duration is "never" important, but that's a fault of the humans

Whether the connection was successful or blocked is less important for higher severity reports

This is also the case for the source IP/Host role

For the critical incidents "only" the type of attack is important

Attention weights (wedian %) [lest Data]							
	Overall	Low (1)	Medium (2)	High (3)	Critical (4)		
Description	0.1	0.1	0.4	0.2	0.1		
Successful	7.6	7.8	8.5	3.9	1.2		
Duration	0	0	0	0	0		
Source Role	90.5	90.8	55.4	30.2	2.6		
Target Role	0.1	0.1	1.8	1.5	0		
Service	0.1	0.1	0.4	0.2	0		
Location	0.1	0.1	0.2	0.1	0		
ТТР	0.5	0.4	32.8	63.3	94.9		
External	0	0	0.2	0.1	0		

Attendious Mainhale (Mainhau O/) ITent Detel

TWOSIXTECH.COM

Questions

chae.clark@twosixtech.com