
An Analysis of C/C++ Datasets for
Machine Learning-Assisted Software Vulnerability Detection

Dan Grahn & Junjie Zhang, PhD | CAMLIS 2021

● Motivation

○ What makes MLAVD difficult?

○ State of MLAVD

● Research

○ Selected Datasets + Wild C

○ Results

○ Contribution

○ Questions / Contact

Outline

2

● Vulnerability detection (VD) is a hands-on and
resource-intensive process.

○ Manual code reviews divert programmers.

○ Static SCA is prone to false positives.

○ Fuzzing/Dynamic analysis takes a lot of compute.

● Machine Learning-Assisted Software Vulnerability
Detection (MLAVD) offers the promise of accelerating
the VD process.

Motivation for MLAVD

3

What makes MLAVD
difficult?

4

● The difference between
safe and vulnerable code
can be extremely subtle.

○ E.g., CWE-193 Off-by-
one Error

○ This code inserts a null
pointer to signify the
last widget but fails to
allocate space for it.

int i;
unsigned int num;
Widget **list;

num = GetUntrustedSizeValue();
if ((num == 0) || (num > MAX_NUM_WIDGETS)) {

ExitError("Incorrect number of widgets requested!");
}

list = (Widget **) malloc(num * sizeof(Widget*));
printf("list ptr=%p\n", list);

for(i = 0; i < num; i++) {
list[i] = InitializeWidget();

}

list[num] = NULL;
showWidgets(list);

Source: https://cwe.mitre.org/data/definitions/193.html

https://cwe.mitre.org/data/definitions/193.html

● Interest in MLAVD has
increased dramatically
in the past few years.

● Advent of deep learning?

● Increase in cybercrime?

● Ubiquity of software?

State of MLAVD

5

Source: NVD and Research Archives

● Bold claims regarding performance are being made
regularly.

○ It’s not uncommon to see Accuracy and F1 scores
in the 90s.

● But much of the work is based on just a few datasets.

What about the datasets?

State of MLAVD

6

Research Goal

7

● Explore available datasets used for MLAVD to:

○ Determine how realistic their code is,

○ Uncover any hidden biases, and

○ Detect any additional shortcomings.

Selected Datasets: Big-Vul

8

● Collected by crawling
the CVE database and
linking CVEs with open-
source GitHub projects.

● Labelled using CVE and
commit information.

Name License Granularity Compiles? Cases # of
Vulns

Relevant
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A

Selected Datasets: Draper-VDISC

9

● Collected from Debian
and public Git
repositories,
deduplicated.

● Labelled using
combined predictions
of Clang, Cppcheck, and
Flawfinder.

Name License Granularity Compiles? Cases # of
Vulns

Relevant
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A

Selected Datasets: IntroClass

10

● Real submissions of six
assignments from an
introduction
programming class.

● Includes expected and
actual output for repair
testing.

● Published with
ManyBugs

Name License Granularity Compiles? Cases # of
Vulns

Relevant
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A

Selected Datasets: Juliet 1.3

11

● Hand-curated collection
of vulnerabilities.

● The most frequently
used MLAVD dataset.

● Part of the NIST
Software Assurance
Reference Dataset
(SARD)

Name License Granularity Compiles? Cases # of
Vulns

Relevant
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A

Selected Datasets: ManyBugs

12

● Collected from 9 open-
source programs.

● Labelled using commit
information.

● Includes before/after
patches for repair
testing.

● Published with
IntroClass

Name License Granularity Compiles? Cases # of
Vulns

Relevant
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A

Selected Datasets: SonarCloud Vulnerable Code Prospector 4 C (SVCP4C

13

● Method to collect
vulnerable code from
SonarCloud API.

● Paper also provides
dataset.

Name License Granularity Compiles? Cases # of
Vulns

Relevant
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A

Selected Datasets: Taxonomy of Buffer Overflows

14

● A structured taxonomy
of buffer overflows
based on 22 attributes.

● Each of the 291 types
has three vulnerable
and one non-vulnerable
example.

● Part of NIST SARD

Name License Granularity Compiles? Cases # of
Vulns

Relevant
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of
Buffer Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A

● Before we can determine how realistic the datasets are,
we need to know what “normal” C/C++ code looks like.

○ It’s outside the scope of our paper (or any paper) to
collect all C/C++ code.

● Wild C is a large publicly available collection of C/C++
source code.

○ All public C/C++ repositories on GitHub with 10+ stars

○ 36,568 repositories

○ 12M C/C++ files, 411M functions

Introducing Wild C

15

● Why GitHub?

○ Private code isn’t accessible.

○ GitHub is the largest public code host (by a huge
margin).

● Why 10 stars?

○ The more similar code is written, the more likely it is
to be put into a popular library.

○ Code which isn’t popular is more likely to be one-off
projects, programming assignments, and similar.

○ Resource constraints. 🤷

Wild C: Rationale

16

All Code

Public Code

GitHub

Public Repos

Collected

● Extract tokens from
each file with ANTLR

● Convert token output
to CSV files with listed
columns.

● Aggregate various
metrics based on files,
tokens, and datasets.

Preprocessing

18

Column Description

uuid Generated UUID for referencing

dataset Source dataset

file_name Source filename

token_num Index of token in file

char_start Character at which the token starts, relative to file

char_end Character at which the token ends, relative to file

token_text Raw text of the token

token_type Type of token as specified by the grammar

channel ANTLR internal for handling input categories

line Line on which the token starts

line_char Character on which the token starts, relative to line start

Plot
Histogram of tokens per file
normalized using a kernel-density
estimate with X-axis on a log
scale.

Caution: Big-Vul and Draper VDISC
contain functions not files.

Takeaways

● Most datasets are biased
towards shorter files.

● Datasets drawn from existing
repos perform better.

Results: Tokens per File / File Length

19

Results: Token Usage

20

Takeaways

● Each of the datasets has
token-types which are
missing.

● Because some tokens are
used more than others, this
has varying effect.

● Datasets drawn from existing
repositories have significantly
fewer missing tokens and less
percent difference in usage.

Dataset Missing Tokens Usage % Difference

Count % Use % Median Mean

Big-Vul 8 6.1 0.002 34.5 48.1

Draper VDISC 2 1.5 0.001 41.5 49.0

IntroClass 92 70.8 11.547 81.4 316.1

Juliet 43 33.1 0.317 82.9 612.2

ManyBugs 11 8.5 0.018 50.0 86.0

SVCP4C 23 17.7 0.061 40.9 59.7

Taxonomy… 74 56.9 4.954 93.9 432.8

130 Total Token Types

Results: Token Usage Outliers

21

Big-Vul Draper VDISC IntroClass Juliet

Type % Diff Type % Diff Type % Diff Type % Diff

1 explicit 425.1 register 255.9 % 3200.8 wchar_t 34435.5

2 char16_t 219.5 this 196.0 AndAnd 2505.7 namespace 3233.5

3 register 212.1 delete 140.6 / 1203.3 delete 2744.1

4 static_cast 179.4 double 111.1 else 645.2 using 2041.2

ManyBugs SVCP4C Taxonomy Merged

Type % Diff Type % Diff Type % Diff Type % Diff

1 extern 2010.3 CharLiteral 406.0 do 5711.3 extern 1434.1

2 typedef 574.2 register 279.5 char 2373.4 wchar_t 926.7

3 wchar_t 332.0 char 190.7 <= 2293.0 typedef 397.2

4 CharLiteral 322.0 AndAnd 185.5 CharLiteral 2185.5 CharLiteral 284.5

Results: Token Bigram Usage

22

NLP uses N-grams to help bring
context to word usage. We do the
same for tokens.

Takeaways

● None of the datasets contain
more than 42% of the
bigrams in Wild C.

● Bigram usage “widens the
gap” between hand-created
and collected datasets.

Dataset Missing Bigrams Usage % Difference

Count % Use % Median Mean

Big-Vul 6,063 74.0 0.055 56.3 244.1

Draper VDISC 4,788 58.4 0.054 68.2 226.3

IntroClass 8,066 98.4 42.051 94.7 734.9

Juliet 7,637 93.2 4.651 92.8 1,341.1

ManyBugs 5,408 66.0 0.106 89.6 2,363.6

SVCP4C 6,654 81.2 0.320 72.3 498.0

Taxonomy… 7,989 97.5 19.326 92.4 635.6

8,274 Total Bigrams in Wild C

Results: Token Bigram Usage Frequency

23

Plot
Histogram of token bigram usage
frequencies by dataset
normalized using a kernel-density
estimate with X-axis on a log
scale.

Takeaways

● Collected datasets are closer
to Wild C.

● The larger the collected
dataset, the closer to Wild C.

● Juliet exhibits a strange
distribution compared to
other datasets.

Plot
Juliet augments tests by swapping
datatypes in the vulnerabilities.
Histogram of augmentations by
number of test groups and
number of files.

Takeaways

● Juliet contains pre-split
augmentations.

Uh-oh!
Pre-split augmentations are bad
for machine learning.

Near Duplicates: Juliet’s Test Case Augmentations

24

Plot
Histogram of the percentage of
test examples with matches in
the training set and training
examples with matches in the
test set for random 80/20 splits.

Takeaways

● μ = 58.3% of test cases
augmented in training data

● μ = 22.1% of training cases
augmented in test data

At least 16 papers use Juliet w/o
addressing this augmentation.

Near Duplicates: Juliet Data Leakage Analysis

25

● MinHash with LSH to
find near-duplicates
with a Jacquard
similarity of >0.99.

● All datasets exhibit
duplication and suffer
from data leakage
between random
test/train splits.

Near Duplicates: File Information

Name Unique
Groups

Unique % of
Total Dataset

Test Split % Test
w/Train Match

% Train
w/Test Match

Big-Vul 91,300 63.87% 0.10 45.84% 23.01%

Draper VDISC 931,804 73.12% 0.01 36.10% 5.29%

IntroClass 28 45.16% 0.20 70.14% 43.27%

Juliet 1.3 7,933 7.84% 0.10 98.00% 82.60%

ManyBugs 8,197 3.67% 0.10 99.70% 91.19%

SVCP4C 1,104 9.71% 0.20 99.77% 86.05%

Taxonomy of Buffer
Overflows 61 5.24% 0.20 99.91% 93.66%

Wild C/C++ 2,343,364 21.97% 0.10 85.16% 36.25%

26

1. Analysis of
Representivity

2. Analysis of
Duplicativeness

3. Availability of Wild C

Contributions

28

Dataset Notes

Big-Vul High duplication. May be suitable for testing.

Draper VDISC Lower duplication. Biased towards tool-detectable
vulnerabilities. “Most promising dataset.”

IntroClass Insufficient diversity of C/C++ used.

Juliet Contains vulnerability augmentation. Hand-generated.
Use with extreme caution.

ManyBugs High duplication. Few unique vulnerabilities. May be
suitable for “whole project” testing.

SVCP4C High duplication. Biased towards vulnerabilities detected by
SonarCloud. Use with caution.

Taxonomy… Insufficient diversity of C/C++ used.

1. Analysis of
Representivity

2. Analysis of
Duplicativeness

3. Availability of Wild C

Contributions

29

● Largest public dataset of C/C++ code (to the best of
our knowledge)

● “ready to apply” to

○ Comment prediction

○ Function name recommendation

○ Code completion

○ Variable name recommendation

○ Etc.

● Potential to use automatic bug insertion to provide
expanded vulnerability detection dataset.

1. Analyze datasets for other languages

2. Analyze difference between safe and
vulnerable subsets of the data.

3. Build a better dataset.

Future Work

30

1. Analyze datasets for other languages

2. Analyze difference between safe
and vulnerable subsets of the data.

3. Build a better dataset.

Future Work

31

1. Analyze datasets for other languages

2. Analyze difference between safe and
vulnerable subsets of the data.

3. Build a better dataset.

Future Work

5 Future Dataset Recommendations

1. It must be drawn from real code.

2. It must exercise a sufficient diversity
of C/C++.

3. It should be compilable.

4. It should be deduplicated.

5. It should be difficult enough to act as
a viable benchmark.

32

Thanks for listening!

Feel free to reach out. J

Dan Grahn
dan.grahn@wright.edu
@realDanGrahn

mailto:dan.grahn@wright.edu

