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● Vulnerability detection (VD) is a hands-on and 
resource-intensive process.

○ Manual code reviews divert programmers.

○ Static SCA is prone to false positives.

○ Fuzzing/Dynamic analysis takes a lot of compute.

● Machine Learning-Assisted Software Vulnerability 
Detection (MLAVD) offers the promise of accelerating 
the VD process. 

Motivation for MLAVD
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What makes MLAVD 
difficult?
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● The difference between 
safe and vulnerable code 
can be extremely subtle.

○ E.g., CWE-193 Off-by-
one Error

○ This code inserts a null 
pointer to signify the 
last widget but fails to 
allocate space for it.

int i;
unsigned int num;
Widget **list;

num = GetUntrustedSizeValue();
if ((num == 0) || (num > MAX_NUM_WIDGETS)) {

ExitError("Incorrect number of widgets requested!");
}

list = (Widget **) malloc(num * sizeof(Widget*));
printf("list ptr=%p\n", list);

for(i = 0; i < num; i++) {
list[i] = InitializeWidget();

}

list[num] = NULL;
showWidgets(list);

Source: https://cwe.mitre.org/data/definitions/193.html

https://cwe.mitre.org/data/definitions/193.html


● Interest in MLAVD has 
increased dramatically 
in the past few years.

● Advent of deep learning?

● Increase in cybercrime?

● Ubiquity of software?

State of MLAVD
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Source: NVD and Research Archives



● Bold claims regarding performance are being made 
regularly.

○ It’s not uncommon to see Accuracy and F1 scores 
in the 90s.

● But much of the work is based on just a few datasets.

What about the datasets?

State of MLAVD
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Research Goal
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● Explore available datasets used for MLAVD to:

○ Determine how realistic their code is,

○ Uncover any hidden biases, and

○ Detect any additional shortcomings.



Selected Datasets: Big-Vul
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● Collected by crawling 
the CVE database and 
linking CVEs with open-
source GitHub projects.

● Labelled using CVE and 
commit information.

Name License Granularity Compiles? Cases # of 
Vulns

Relevant 
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer 
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A



Selected Datasets: Draper-VDISC
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● Collected from Debian 
and public Git 
repositories, 
deduplicated.

● Labelled using 
combined predictions 
of Clang, Cppcheck, and 
Flawfinder.

Name License Granularity Compiles? Cases # of 
Vulns

Relevant 
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer 
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A



Selected Datasets: IntroClass
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● Real submissions of six 
assignments from an 
introduction 
programming class.

● Includes expected and 
actual output for repair 
testing.

● Published with 
ManyBugs

Name License Granularity Compiles? Cases # of 
Vulns

Relevant 
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer 
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A



Selected Datasets: Juliet 1.3
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● Hand-curated collection 
of vulnerabilities.

● The most frequently 
used MLAVD dataset.

● Part of the NIST 
Software Assurance 
Reference Dataset 
(SARD)

Name License Granularity Compiles? Cases # of 
Vulns

Relevant 
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer 
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A



Selected Datasets: ManyBugs

12

● Collected from 9 open-
source programs.

● Labelled using commit 
information.

● Includes before/after 
patches for repair 
testing.

● Published with 
IntroClass

Name License Granularity Compiles? Cases # of 
Vulns

Relevant 
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer 
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A



Selected Datasets: SonarCloud Vulnerable Code Prospector 4 C (SVCP4C
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● Method to collect 
vulnerable code from 
SonarCloud API.

● Paper also provides 
dataset.

Name License Granularity Compiles? Cases # of 
Vulns

Relevant 
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of Buffer 
Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A



Selected Datasets: Taxonomy of Buffer Overflows
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● A structured taxonomy 
of buffer overflows 
based on 22 attributes.

● Each of the 291 types 
has three vulnerable 
and one non-vulnerable 
example.

● Part of NIST SARD

Name License Granularity Compiles? Cases # of 
Vulns

Relevant 
Citations

Big-Vul MIT Functions û 348 Projects 3,754 3

Draper VDISC CC-BY 4.0 Functions û 1.27M Funcs 87,704 5

IntroClass BSD Scripts ü 6 Asgmts 998 9

Juliet 1.3 CC0 1.0 Scripts ü 64,099 Cases 64,099 34

ManyBugs BSD Projects ü 5.9M Lines 185 9

SVCP4C GPLv3 Files û 2,378 Files 9,983 2

Taxonomy of 
Buffer Overflows MIT Scripts ü 1,164 Cases 873 2

Wild C/C++ CC-BY 4.0 Files û 12.1M Files N/A N/A



● Before we can determine how realistic the datasets are, 
we need to know what “normal” C/C++ code looks like.

○ It’s outside the scope of our paper (or any paper) to 
collect all C/C++ code.

● Wild C is a large publicly available collection of C/C++ 
source code.

○ All public C/C++ repositories on GitHub with 10+ stars

○ 36,568 repositories

○ 12M C/C++ files, 411M functions

Introducing Wild C
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● Why GitHub?

○ Private code isn’t accessible.

○ GitHub is the largest public code host (by a huge 
margin).

● Why 10 stars?

○ The more similar code is written, the more likely it is 
to be put into a popular library.

○ Code which isn’t popular is more likely to be one-off 
projects, programming assignments, and similar.

○ Resource constraints. 🤷

Wild C: Rationale
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Public Code

GitHub
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Collected



● Extract tokens from 
each file with ANTLR

● Convert token output 
to CSV files with listed 
columns.

● Aggregate various 
metrics based on files, 
tokens, and datasets.

Preprocessing
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Column Description

uuid Generated UUID for referencing

dataset Source dataset

file_name Source filename

token_num Index of token in file

char_start Character at which the token starts, relative to file

char_end Character at which the token ends, relative to file

token_text Raw text of the token

token_type Type of token as specified by the grammar

channel ANTLR internal for handling input categories

line Line on which the token starts

line_char Character on which the token starts, relative to line start



Plot
Histogram of tokens per file 
normalized using a kernel-density 
estimate with X-axis on a log 
scale.

Caution: Big-Vul and Draper VDISC 
contain functions not files.

Takeaways

● Most datasets are biased 
towards shorter files.

● Datasets drawn from existing 
repos perform better.

Results: Tokens per File / File Length
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Results: Token Usage
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Takeaways

● Each of the datasets has 
token-types which are 
missing.

● Because some tokens are 
used more than others, this 
has varying effect.

● Datasets drawn from existing 
repositories have significantly 
fewer missing tokens and less 
percent difference in usage.

Dataset Missing Tokens Usage % Difference

Count % Use % Median Mean

Big-Vul 8 6.1 0.002 34.5 48.1

Draper VDISC 2 1.5 0.001 41.5 49.0

IntroClass 92 70.8 11.547 81.4 316.1

Juliet 43 33.1 0.317 82.9 612.2

ManyBugs 11 8.5 0.018 50.0 86.0

SVCP4C 23 17.7 0.061 40.9 59.7

Taxonomy… 74 56.9 4.954 93.9 432.8

130 Total Token Types



Results: Token Usage Outliers
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Big-Vul Draper VDISC IntroClass Juliet

Type % Diff Type % Diff Type % Diff Type % Diff

1 explicit 425.1 register 255.9 % 3200.8 wchar_t 34435.5

2 char16_t 219.5 this 196.0 AndAnd 2505.7 namespace 3233.5

3 register 212.1 delete 140.6 / 1203.3 delete 2744.1

4 static_cast 179.4 double 111.1 else 645.2 using 2041.2

ManyBugs SVCP4C Taxonomy Merged

Type % Diff Type % Diff Type % Diff Type % Diff

1 extern 2010.3 CharLiteral 406.0 do 5711.3 extern 1434.1

2 typedef 574.2 register 279.5 char 2373.4 wchar_t 926.7

3 wchar_t 332.0 char 190.7 <= 2293.0 typedef 397.2

4 CharLiteral 322.0 AndAnd 185.5 CharLiteral 2185.5 CharLiteral 284.5



Results: Token Bigram Usage
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NLP uses N-grams to help bring 
context to word usage. We do the 
same for tokens.

Takeaways

● None of the datasets contain 
more than 42% of the 
bigrams in Wild C.

● Bigram usage “widens the 
gap” between hand-created 
and collected datasets.

Dataset Missing Bigrams Usage % Difference

Count % Use % Median Mean

Big-Vul 6,063 74.0 0.055 56.3 244.1

Draper VDISC 4,788 58.4 0.054 68.2 226.3

IntroClass 8,066 98.4 42.051 94.7 734.9

Juliet 7,637 93.2 4.651 92.8 1,341.1

ManyBugs 5,408 66.0 0.106 89.6 2,363.6

SVCP4C 6,654 81.2 0.320 72.3 498.0

Taxonomy… 7,989 97.5 19.326 92.4 635.6

8,274 Total Bigrams in Wild C



Results: Token Bigram Usage Frequency
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Plot
Histogram of token bigram usage 
frequencies by dataset 
normalized using a kernel-density 
estimate with X-axis on a log 
scale.

Takeaways

● Collected datasets are closer 
to Wild C.

● The larger the collected 
dataset, the closer to Wild C.

● Juliet exhibits a strange 
distribution compared to 
other datasets.



Plot
Juliet augments tests by swapping 
datatypes in the vulnerabilities. 
Histogram of augmentations by 
number of test groups and 
number of files.

Takeaways

● Juliet contains pre-split 
augmentations.

Uh-oh!
Pre-split augmentations are bad 
for machine learning.

Near Duplicates: Juliet’s Test Case Augmentations
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Plot
Histogram of the percentage of 
test examples with matches in 
the training set and training 
examples with matches in the 
test set for random 80/20 splits.

Takeaways

● μ = 58.3% of test cases 
augmented in training data

● μ = 22.1% of training cases 
augmented in test data

At least 16 papers use Juliet w/o 
addressing this augmentation.

Near Duplicates: Juliet Data Leakage Analysis
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● MinHash with LSH to 
find near-duplicates 
with a Jacquard 
similarity of >0.99. 

● All datasets exhibit 
duplication and suffer 
from data leakage 
between random 
test/train splits.

Near Duplicates: File Information

Name Unique 
Groups

Unique % of 
Total Dataset

Test Split % Test 
w/Train Match

% Train 
w/Test Match

Big-Vul 91,300 63.87% 0.10 45.84% 23.01%

Draper VDISC 931,804 73.12% 0.01 36.10% 5.29%

IntroClass 28 45.16% 0.20 70.14% 43.27%

Juliet 1.3 7,933 7.84% 0.10 98.00% 82.60%

ManyBugs 8,197 3.67% 0.10 99.70% 91.19%

SVCP4C 1,104 9.71% 0.20 99.77% 86.05%

Taxonomy of Buffer 
Overflows 61 5.24% 0.20 99.91% 93.66%

Wild C/C++ 2,343,364 21.97% 0.10 85.16% 36.25%
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1. Analysis of 
Representivity

2. Analysis of 
Duplicativeness

3. Availability of Wild C

Contributions
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Dataset Notes

Big-Vul High duplication. May be suitable for testing.

Draper VDISC Lower duplication. Biased towards tool-detectable 
vulnerabilities. “Most promising dataset.”

IntroClass Insufficient diversity of C/C++ used.

Juliet Contains vulnerability augmentation. Hand-generated.
Use with extreme caution.

ManyBugs High duplication. Few unique vulnerabilities. May be 
suitable for “whole project” testing.

SVCP4C High duplication. Biased towards vulnerabilities detected by 
SonarCloud. Use with caution.

Taxonomy… Insufficient diversity of C/C++ used.



1. Analysis of 
Representivity

2. Analysis of 
Duplicativeness

3. Availability of Wild C

Contributions
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● Largest public dataset of C/C++ code (to the best of 
our knowledge)

● “ready to apply” to

○ Comment prediction

○ Function name recommendation

○ Code completion

○ Variable name recommendation

○ Etc.

● Potential to use automatic bug insertion to provide 
expanded vulnerability detection dataset.



1. Analyze datasets for other languages

2. Analyze difference between safe and 
vulnerable subsets of the data.

3. Build a better dataset.

Future Work
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1. Analyze datasets for other languages

2. Analyze difference between safe 
and vulnerable subsets of the data.

3. Build a better dataset.

Future Work
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1. Analyze datasets for other languages

2. Analyze difference between safe and 
vulnerable subsets of the data.

3. Build a better dataset.

Future Work

5 Future Dataset Recommendations

1. It must be drawn from real code.

2. It must exercise a sufficient diversity 
of C/C++.

3. It should be compilable.

4. It should be deduplicated.

5. It should be difficult enough to act as 
a viable benchmark.
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Thanks for listening!

Feel free to reach out. J

Dan Grahn
dan.grahn@wright.edu
@realDanGrahn 

mailto:dan.grahn@wright.edu

