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Introduction



Can we detect exploits using 
undocumented hardware performance 

counters on Intel CPUs?



Hardware Performance Counters

● A.k.a. Performance Monitoring Counters
● Hardware devices that count specific events across different 

Performance Monitoring Units (PMUs)
● Usually used to debug program/system slowness

○ Measuring things like cache misses, branch mispredicts, port usage, etc.
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A Couple of Years Ago...



Background: Spectre and Meltdown

● CPU-level vulnerabilities that (ab)use 
processor speculation
○ Processor guesses what code should be run 

before it knows for sure
● Many ways to "do bad things"

○ Speculate over a bounds check (Spectre v1)
○ Speculate through a bad return address 

(Spectre RSB)
○ Speculation reading a disabled FPU (LazyFP)
○ And more!
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Background: Flush+Reload

● One possible technique for exfiltrating data inside speculative execution
● Consistent, easy (with asm access)
● Basic idea:

○ (CL)FLUSH each line in a "timing" array
○ Have speculative execution load one of the lines
○ Subsequent attacker loads will find one line faster than the others
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Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

INACTIVE

INACTIVE
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Flush+Reload Hypothetical Example
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Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];
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Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();
if (end-start < threshold) {

secret = i;
}

}

INACTIVE

INACTIVE

ACTIVE

INACTIVE
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Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();
if (end-start < threshold) {

secret = i;
}

}

INACTIVE

INACTIVE

ACTIVE

INACTIVE

i=0 SLOW
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Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();
if (end-start < threshold) {

secret = i;
}

}

ACTIVE

INACTIVE

ACTIVE

INACTIVE
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18



Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();
if (end-start < threshold) {

secret = i;
}

}

ACTIVE

ACTIVE

ACTIVE

INACTIVE

i=2 FAST
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Spectre and Meltdown Detections

● Developed detections shortly after public announcement of the bugs 
(early 2018)

● Used 3 perf counters as features
○ Cache misses
○ Cache references
○ Branch misses

● First two form "cache miss ratio"
● Third normalizes to the complexity of the program
● Sampled on a 100ms ticker
● Successfully detects all public proof-of-concepts we’ve tried
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Spectre and Meltdown
Support Vector Machine - Decision Function visualized
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● Plot shows a part of the decision boundary learnt by the 
SVM model

● Blue shaded region represents benign surface

● Rust shaded region  represents malicious surface

● Superimposing the test data points as a scatter plot over 
this decision boundary where green data points represent 
baseline data and red data points represent spectre/ 
meltdown variants



Support Vector Machine 
Features: Cache miss ratio, Cache miss - Branch miss ratio
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Spectre and Meltdown

● This detection can be easily defeated though!
● Mix-in cache friendly code into the proof-of-concept
● Bypasses existing cache-miss-ratio-based detections

○ Lets us achieve an arbitrarily low cache-miss ratio
○ Little runtime overhead (since it's trying to be extremely cache friendly)
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Spectre and Meltdown in Hiding

// stuff that will be read in a cache-friendly way to evade detection
unsigned long long stuff[65536];

...
// do some stuff that's really cache-nice to throw off detection
register unsigned long long ctr = 0;
for (register int round = 0; round < 80000000; round++) {

register unsigned long long *p = &stuff[round % (sizeof(stuff) / 
sizeof(stuff[0]))];

ctr += *p;
*p = ctr;

}
...
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Our Research



Hardware Performance Counters

● Space for 256*256 counters
● Number of documented counters (and what they count) varies per 

microarchitecture
○ Only a few hundred documented on most microarchitectures

● What if we read all of them (even the undocumented ones)?
● Turns exploit detection into a blackbox ML problem
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Counter Selection

● Ran four programs and sequentially gathered all counters 10 times
○ Optimized/minified  _exit(0);
○ Scikit benchmark
○ Spectre v4
○ Spectre v4 in Hiding
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Counter Selection (cont’d)

● Removed always zero counters
● Removed counters that had a difference between scikit benchmark and 

spectre v4 less than 95%
● Removed counters that differed more than 5% between spectre v4 and 

spectre v4 "in hiding"

● Left with 81 counters
● Interestingly no documented counters
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Using Undocumented Counters



Exploits of Interest

• Meltdown (aka Spectre v3 - rogue data cache load)
• Spectre v1 (bounds check bypass)
• Spectre v2 (branch target injection)
• Spectre v4 (speculative store bypass)
• Ghosting_spectrev4 (speculative store with evasive changes)
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Data Collection

● Used Linux perf tool
● Along with the exploits mentioned before, collected data for the 

following baseline programs:
○ LibJIT unit tests
○ Scikit-learn benchmark tests
○ Phoronix test suite
○ Linux defconfig compile
○ Sort function 
○ Mibench benchmarks

● Counters were measured every 100ms
● Each program was run five times
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Algorithms used

• Support Vector Machine

• Random Forest

• eXtreme Gradient Boosting (XGBoost)

• Histogram based Gradient Boosting (HGBoost)
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Detecting Spectre (Again)



Model results 
Features: 36-98, 4d-e3, ef-f4

F1 F2 F3 intel_arch model precision recall fpr fnr auc acc meltdown spectre1 spectre2 spectre4 spectre4_new

36_98 4d_e3 ef_f4 ivybridge SVM 1 0.85 0 0.3 0.85 0.99 no no no yes yes

36_98 4d_e3 ef_f4 ivybridge XGBoost 0.98 0.94 0.0004 0.12 0.94 0.99 yes yes yes yes yes

36_98 4d_e3 ef_f4 ivybridge RF 1 0.86 0 0.28 0.86 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 ivybridge HGBoost 0.98 0.94 0.0004 0.112 0.94 0.99 yes yes no yes yes

36_98 4d_e3 ef_f4 haswell SVM 0.98 0.93 0.0005 0.13 0.94 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 haswell XGBoost 0.99 0.98 0.0004 0.04 0.98 0.99 yes yes yes yes yes

36_98 4d_e3 ef_f4 haswell RF 1 0.97 0.0001 0.06 0.97 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 haswell HGBoost 0.98 0.98 0.0008 0.04 0.98 0.99 yes yes yes yes yes
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XGBoost AUC for Test and Hold-out Dataset
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XGBoost Normalized Confusion Matrices
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SHAP Model Interpretation

• SHapley Additive exPlanation 
(Lundberg, et al)

• Based on Shapely values, a 
technique used in game theory 
to determine how much each 
player in a collaborative game 
has contributed to its success

• Each SHAP value measures how 
much each feature in our model 
contributes to the prediction, 
either positively or negatively
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XGBoost Feature Importance
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XGBoost Partial Dependence Plot

• Shows the marginal effect that one or two variables have on the predicted outcome. 

• Whether the relationship between the target and the variable is linear, monotonic, 
or more complex

• Let’s see the partial dependence plots for each of the three features
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• High SHAP value, low counter 
value -> Benign

• Low SHAP value, high counter 
value -> Malicious

XGBoost Partial Dependence Plot (cont’d)
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Feature: ef-f4



XGBoost Partial Dependence Plot (cont’d)

● Low SHAP value, low counter 
value -> Benign

● High SHAP value, high counter 
value -> Malicious
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Feature: 4d-e3



XGBoost Partial Dependence Plot (cont’d)

● Low SHAP value, low counter 
value -> Benign

● High SHAP value, high counter 
value -> Malicious
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Feature: 36-98



How each feature pushes the prediction to 1/0

SHAP Force Plots
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A Surprise Confirmation



Some Time Later...

● Widely publicized leak of Immunity Inc.'s CANVAS
○ Exploit toolkit

● Included a Spectre-style exploit, with a helpful test flag!
● Ran the "in-the-wild" exploit, and our model was able to detect it
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Interpretation
Warning: speculation ahead



Possible Interpretation of Counters: ef-f4 

● A single support file in Intel VTune names the 0xEF event_id as 
“CORE_SNOOP_RESPONSE”
○ Description: “tbd” - thanks Intel
○ Supposedly only for SKL-X and Cascade Lake…
○ 0xf4 umask not documented

● Hypothesis: counter is detecting the responses from other cores when 
CLFLUSH invalidates cache lines

● Counters showed “malicious” even when the cache sampling was 
broken
○ Supports the theory that this is measuring cache evictions instead of sampling
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Possible Interpretation of Counters: 36-98 

● Haswell-EP documentation names the uncore PMC 0x36 as 
"UNC_C_TOR_OCCUPANCY"
○ 0x98 umask not documented
○ Other umasks refer to a separate MSR being used to filter/select data

● Uncore is responsible for LLC coherence though…
● Maybe "seeing through" to the uncore PMU because of an 

implementation detail?
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