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Can we detect exploits using
undocumented hardware performance
counters on Intel CPUs?
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Hardware Performance Counters

A.k.a. Performance Monitoring Counters

Hardware devices that count specific events across different
Performance Monitoring Units (PMUs)

Usually used to debug program/system slowness
Measuring things like cache misses, branch mispredicts, port usage, etc.

SOPHOS



A Couple of Years Ago...
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Background: Spectre and Meltdown

CPU-level vulnerabilities that (ab)use

processor speculation
Processor guesses what code should be run
before it knows for sure

Many ways to "do bad things"
Speculate over a bounds check (Spectre v1)
Speculate through a bad return address
(Spectre RSB)
Speculation reading a disabled FPU (LazyFP)
And more!
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Background: Flush+Reload

One possible technique for exfiltrating data inside speculative execution
Consistent, easy (with asm access)

Basic idea:
(CL)FLUSH each line in a "timing" array
Have speculative execution load one of the lines
Subsequent attacker loads will find one line faster than the others
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Flush+Reload Hypothetical Example
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Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

SOPHOS

12



Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];
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Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

e
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Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

A _
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Flush+Reload Hypothetical Example

SOPHOS

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cachel[i];
uint64_t end = rdtsc();
if (end-start < threshold) {
secret = 1;
b

e
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Flush+Reload Hypothetical Example

1=0 SLOW

e
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Flush+Reload Hypothetical Example

i=1 SLOW
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Flush+Reload Hypothetical Example

for (int i = ©; i < 4; i++) {
uint64_t start = rdtsc();

int a = cache[i]; ACTIVE
uinté64_t end = rdtsc();
if (end-start < threshold) { ACTIVE

} secret = i; ey Y I ACTIVE
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Spectre and Meltdown Detections

Developed detections shortly after public announcement of the bugs

(early 2018)

Used 3 perf counters as features

Cache misses
Cache references

Branch misses
First two form "cache miss ratio"
Third normalizes to the complexity of the program
Sampled on a 100ms ticker
Successfully detects all public proof-of-concepts we’ve tried
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Spectre and Meltdown

Support Vector Machine - Decision Function visualized
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Plot shows a part of the decision boundary learnt by the
SVM model

Blue shaded region represents benign surface

Rust shaded region represents malicious surface
Superimposing the test data points as a scatter plot over
this decision boundary where green data points represent

baseline data and red data points represent spectre/
meltdown variants

cache-miss branch-miss ratio
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Support Vector Machine

Features: Cache miss ratio, Cache miss - Branch miss ratio

SVM: Cachemiss Branchmiss Ratio | Train accuracy: 0.9997730882686635
SVM: Cachemiss Branchmiss Ratio | Test accuracy: 0.9995393827729157
SVM: Cachemiss Branchmiss Ratio | AUC: 0.9761904761904762

ROC curve | SVM: Cachemiss Branchmiss Ratio
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Spectre and Meltdown

This detection can be easily defeated though!
Mix-in cache friendly code into the proof-of-concept

Bypasses existing cache-miss-ratio-based detections
Lets us achieve an arbitrarily low cache-miss ratio
Little runtime overhead (since it's trying to be extremely cache friendly)
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Spectre and Meltdown in Hiding

// stuff that will be read in a cache-friendly way to evade detection
unsigned long long stuff[65536];

// do some stuff that's really cache-nice to throw off detection
register unsigned long long ctr = 0;
for (register int round = ©; round < 80000000; round++) {

register unsigned long long *p = &stuff[round % (sizeof(stuff) /
sizeof(stuff[0]))];

ctr += *p;

*p = ctr,;
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Our Research
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Hardware Performance Counters

Space for 256*256 counters
Number of documented counters (and what they count) varies per

microarchitecture
Only a few hundred documented on most microarchitectures

What if we read all of them (even the undocumented ones)?
Turns exploit detection into a blackbox ML problem

SOPHOS

pAS



Counter Selection

Ran four programs and sequentially gathered all counters 10 times
Optimized/minified _exit(0) ;
Scikit benchmark
Spectre v4
Spectre v4 in Hiding
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Counter Selection (cont’d)

Removed always zero counters
Removed counters that had a difference between scikit benchmark and

spectre v4 less than 95%
Removed counters that differed more than 5% between spectre v4 and

spectre v4 "in hiding"

Left with 81 counters
Interestingly no documented counters
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Using Undocumented Counters
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Exploits of Interest

Meltdown (aka Spectre v3 - rogue data cache load)
Spectre v1 (bounds check bypass)

Spectre v2 (branch target injection)

Spectre v4 (speculative store bypass)
Ghosting_spectrev4 (speculative store with evasive changes)
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Data Collection

Used Linux perTf tool

Along with the exploits mentioned before, collected data for the

following baseline programs:
LibJIT unit tests
Scikit-learn benchmark tests
Phoronix test suite
Linux defconfig compile
Sort function
Mibench benchmarks

Counters were measured every 100ms
Each program was run five times
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Algorithms used

Support Vector Machine
Random Forest
eXtreme Gradient Boosting (XGBoost)

Histogram based Gradient Boosting (HGBoost)
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Detecting Spectre (Again)
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Model results

Features: 36-98, 4d-e3, ef-f4

F1 F2 F3 |intel_arch| model |precision|recall| fpr fnr | auc | acc | meltdown | spectre1 | spectre2 | spectre4 |spectre4 _new
36_98 |4d_e3 |ef_f4| ivybridge SVM 1 0.85 0 0.3 |0.85] 0.99 no no no yes yes
36_98 (4d_e3 |ef_f4| ivybridge | XGBoost 0.98 0.94 | 0.0004 | 0.12 [0.94 | 0.99 yes yes yes yes yes
36_98 |4d_e3 |ef_f4| ivybridge RF 1 0.86 0 0.28 |0.86| 0.99 yes no no yes yes
36_98 (4d_e3 |ef_f4]| ivybridge | HGBoost 0.98 0.94 | 0.0004 | 0.112 [ 0.94 | 0.99 yes yes no yes yes
36_98 |4d_e3|ef_f4| haswell SVM 0.98 0.93 | 0.0005| 0.13 [0.94| 0.99 yes no no yes yes
36_98 |4d _e3|ef_f4| haswell | XGBoost 0.99 0.98 | 0.0004 | 0.04 [0.98| 0.99 yes yes yes yes yes
36_98|4d_e3 |ef_f4| haswell RF 1 0.97 | 0.0001 | 0.06 |0.97 | 0.99 yes no no yes yes
36_98 (4d _e3|ef_f4| haswell | HGBoost 0.98 0.98 | 0.0008 | 0.04 [0.98| 0.99 yes yes yes yes yes
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XGBoost AUC for Test and Hold-out Dataset

SOPHOS

Train accuracy: 0.9998672022841207

Test accuracy: 0.9988542158118218

AUC: 0.9794988379651749

False Positive Rate: 0.00041191816559110257
False Negative Rate: 0.04059040590405904
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Train accuracy: 0.9998672022841207

Test accuracy: 0.9999321435841759

AUC: 0.9965928449744463

False Positive Rate: 0.0

False Negative Rate: 0.0068143100511073255
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XGBoost Normalized Confusion Matrices

XGBoost Normalized confusion matrix XGBoost-holdout Normalized confusion matrix
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SHAP Model Interpretation

SHapley Additive exPlanation
(Lundberg, et al)

Three friends hammer What's each individuals
the “error” Log to the conbribution?

ground together,

Based on Shapely values, a

technique used in game theory i

to determine how much each ‘

ﬁlayer in a collaborative game
as contributed to its success

Each SHAP value measures how Error” log

much each feature in our model
contributes to the prediction,
either positively or negatively
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XGBoost Feature Importance

pc_4d_e3

pc_36_98

| | | | | |
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mean(|SHAP value|) (average impact on model output magnitude)
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XGBoost Partial Dependence Plot

Shows the marginal effect that one or two variables have on the predicted outcome.

Whether the relationship between the target and the variable is linear, monotonic,
or more complex

Let’s see the partial dependence plots for each of the three features

SOPHOS
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XGBoost Partial Dependence Plot (cont’d)

Feature: ef-f4

e High SHAP value, low counter
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XGBoost Partial Dependence Plot (cont’d)

Feature: 4d-e3

P e Low SHAP value, low counter
- SR g value -> Benign
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XGBoost Partial Dependence Plot (cont’d)

Feature: 36-98
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SHAP Force Plots

How each feature pushes the prediction to 1/0

higher & lower
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A Surprise Confirmation
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Some Time Later...

Widely publicized leak of Immunity Inc.'s CANVAS
Exploit toolkit

Included a Spectre-style exploit, with a helpful test flag!
Ran the "in-the-wild" exploit, and our model was able to detect it
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Interpretation
Warning: speculation ahead
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Possible Interpretation of Counters: ef-f4

A single support file in Intel VTune names the OXEF event_id as

“CORE_SNOOP_RESPONSE”
Description: “tbd” - thanks Intel
Supposedly only for SKL-X and Cascade Lake...

0xf4 umask not documented
Hypothesis: counter is detecting the responses from other cores when

CLFLUSH invalidates cache lines
Counters showed “malicious” even when the cache sampling was

broken
Supports the theory that this is measuring cache evictions instead of sampling
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Possible Interpretation of Counters: 36-98

Haswell-EP documentation names the uncore PMC 0x36 as

"UNC_C_TOR_OCCUPANCY"

0x98 umask not documented
Other umasks refer to a separate MSR being used to filter/select data

Uncore is responsible for LLC coherence though...
Maybe "seeing through" to the uncore PMU because of an
implementation detail?
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