Using Undocumented Hardware
Performance Counters to Detect
Spectre-Style Attacks

Nick Gregory

Harini Kannan

SOPHOS

CAMLIS 2021

Who We Are

SOPHOS

Nick Gregory

Research Engineer @ Sophos
Background in binary exploitation and low-level systems

Email: nick.gregory@sophos.com

Twitter: @kallsyms
Website: https://www.nickgregory.me

SOPHOS

Harini Kannan

Data Scientist @ Sophos
Background in Business Statistics

Currently area of interests:
System user behavior profiling
Interpretable ML

Command line language modeling
MLOps

Twitter: @jarvision___
Website: https://harini.blog/

SOPHOS

Introduction

SOPHOS

Can we detect exploits using
undocumented hardware performance
counters on Intel CPUs?

SOPHOS

Hardware Performance Counters

A.k.a. Performance Monitoring Counters

Hardware devices that count specific events across different
Performance Monitoring Units (PMUs)

Usually used to debug program/system slowness
Measuring things like cache misses, branch mispredicts, port usage, etc.

SOPHOS

A Couple of Years Ago...

SOPHOS

Background: Spectre and Meltdown

CPU-level vulnerabilities that (ab)use

processor speculation
Processor guesses what code should be run
before it knows for sure

Many ways to "do bad things"
Speculate over a bounds check (Spectre v1)
Speculate through a bad return address
(Spectre RSB)
Speculation reading a disabled FPU (LazyFP)
And more!

SOPHOS

Background: Flush+Reload

One possible technique for exfiltrating data inside speculative execution
Consistent, easy (with asm access)

Basic idea:
(CL)FLUSH each line in a "timing" array
Have speculative execution load one of the lines
Subsequent attacker loads will find one line faster than the others

SOPHOS

10

Flush+Reload Hypothetical Example

SOPHOS

11

Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

SOPHOS

12

Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

SOPHOS

13

Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

e

SOPHOS

14

Flush+Reload Hypothetical Example

if (slow_to_load_usually_true) {

A _

SOPHOS

15

Flush+Reload Hypothetical Example

SOPHOS

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cachel[i];
uint64_t end = rdtsc();
if (end-start < threshold) {
secret = 1;
b

e

16

Flush+Reload Hypothetical Example

1=0 SLOW

e

SOPHOS

17

Flush+Reload Hypothetical Example

i=1 SLOW

SOPHOS

18

Flush+Reload Hypothetical Example

for (int i = ©; i < 4; i++) {
uint64_t start = rdtsc();

int a = cache[i]; ACTIVE
uinté64_t end = rdtsc();
if (end-start < threshold) { ACTIVE

} secret = i; ey Y I ACTIVE

SOPHOS

19

Spectre and Meltdown Detections

Developed detections shortly after public announcement of the bugs

(early 2018)

Used 3 perf counters as features

Cache misses
Cache references

Branch misses
First two form "cache miss ratio"
Third normalizes to the complexity of the program
Sampled on a 100ms ticker
Successfully detects all public proof-of-concepts we’ve tried

SOPHOS

20

Spectre and Meltdown

Support Vector Machine - Decision Function visualized

SOPHOS

Plot shows a part of the decision boundary learnt by the
SVM model

Blue shaded region represents benign surface

Rust shaded region represents malicious surface
Superimposing the test data points as a scatter plot over
this decision boundary where green data points represent

baseline data and red data points represent spectre/
meltdown variants

cache-miss branch-miss ratio

35 1

25

20

10

@ Attacks
@® Non-attacks

cache-miss ratio

21

Support Vector Machine

Features: Cache miss ratio, Cache miss - Branch miss ratio

SVM: Cachemiss Branchmiss Ratio | Train accuracy: 0.9997730882686635
SVM: Cachemiss Branchmiss Ratio | Test accuracy: 0.9995393827729157
SVM: Cachemiss Branchmiss Ratio | AUC: 0.9761904761904762

ROC curve | SVM: Cachemiss Branchmiss Ratio

10 A1 .
”
’ 7’
0.8 1 P 7’
W
5 L7
Ag 0.6 1 »,
H g
=
7’
0.2 1 ”
”
” . —
004 ¢ —— SVM: Cachemiss Branchmiss Ratio
00 02 04 06 08 10

False positive rate

SOPHOS 22

Spectre and Meltdown

This detection can be easily defeated though!
Mix-in cache friendly code into the proof-of-concept

Bypasses existing cache-miss-ratio-based detections
Lets us achieve an arbitrarily low cache-miss ratio
Little runtime overhead (since it's trying to be extremely cache friendly)

SOPHOS

23

Spectre and Meltdown in Hiding

// stuff that will be read in a cache-friendly way to evade detection
unsigned long long stuff[65536];

// do some stuff that's really cache-nice to throw off detection
register unsigned long long ctr = 0;
for (register int round = ©; round < 80000000; round++) {

register unsigned long long *p = &stuff[round % (sizeof(stuff) /
sizeof(stuff[0]))];

ctr += *p;

*p = ctr,;

SOPHOS

24

Our Research

SOPHOS

Hardware Performance Counters

Space for 256*256 counters
Number of documented counters (and what they count) varies per

microarchitecture
Only a few hundred documented on most microarchitectures

What if we read all of them (even the undocumented ones)?
Turns exploit detection into a blackbox ML problem

SOPHOS

pAS

Counter Selection

Ran four programs and sequentially gathered all counters 10 times
Optimized/minified _exit(0) ;
Scikit benchmark
Spectre v4
Spectre v4 in Hiding

SOPHOS

27

Counter Selection (cont’d)

Removed always zero counters
Removed counters that had a difference between scikit benchmark and

spectre v4 less than 95%
Removed counters that differed more than 5% between spectre v4 and

spectre v4 "in hiding"

Left with 81 counters
Interestingly no documented counters

SOPHOS

28

Using Undocumented Counters

SOPHOS

Exploits of Interest

Meltdown (aka Spectre v3 - rogue data cache load)
Spectre v1 (bounds check bypass)

Spectre v2 (branch target injection)

Spectre v4 (speculative store bypass)
Ghosting_spectrev4 (speculative store with evasive changes)

SOPHOS

30

Data Collection

Used Linux perTf tool

Along with the exploits mentioned before, collected data for the

following baseline programs:
LibJIT unit tests
Scikit-learn benchmark tests
Phoronix test suite
Linux defconfig compile
Sort function
Mibench benchmarks

Counters were measured every 100ms
Each program was run five times

SOPHOS

31

Algorithms used

Support Vector Machine
Random Forest
eXtreme Gradient Boosting (XGBoost)

Histogram based Gradient Boosting (HGBoost)

SOPHOS

32

Detecting Spectre (Again)

SOPHOS

Model results

Features: 36-98, 4d-e3, ef-f4

F1 F2 F3 |intel_arch| model |precision|recall| fpr fnr | auc | acc | meltdown | spectre1 | spectre2 | spectre4 |spectre4 _new
36_98 |4d_e3 |ef_f4| ivybridge SVM 1 0.85 0 0.3 |0.85] 0.99 no no no yes yes
36_98 (4d_e3 |ef_f4| ivybridge | XGBoost 0.98 0.94 | 0.0004 | 0.12 [0.94 | 0.99 yes yes yes yes yes
36_98 |4d_e3 |ef_f4| ivybridge RF 1 0.86 0 0.28 |0.86| 0.99 yes no no yes yes
36_98 (4d_e3 |ef_f4]| ivybridge | HGBoost 0.98 0.94 | 0.0004 | 0.112 [0.94 | 0.99 yes yes no yes yes
36_98 |4d_e3|ef_f4| haswell SVM 0.98 0.93 | 0.0005| 0.13 [0.94| 0.99 yes no no yes yes
36_98 |4d _e3|ef_f4| haswell | XGBoost 0.99 0.98 | 0.0004 | 0.04 [0.98| 0.99 yes yes yes yes yes
36_98|4d_e3 |ef_f4| haswell RF 1 0.97 | 0.0001 | 0.06 |0.97 | 0.99 yes no no yes yes
36_98 (4d _e3|ef_f4| haswell | HGBoost 0.98 0.98 | 0.0008 | 0.04 [0.98| 0.99 yes yes yes yes yes

SOPHOS

34

XGBoost AUC for Test and Hold-out Dataset

SOPHOS

Train accuracy: 0.9998672022841207

Test accuracy: 0.9988542158118218

AUC: 0.9794988379651749

False Positive Rate: 0.00041191816559110257
False Negative Rate: 0.04059040590405904

ROC curve
10 — 7
'
7’
"4'
08 ’,
7
'
8 ’, s
® 06
g ”, 7’
g 2
3 04 7’
= 7
7
7
02 ‘,"
'
7
7’
0.0 ’ — Features: pc_36_98, pc_4d_e3, pc_ef_f4
00 02 04 06 08 10
False positive rate
precision recall fl-score support
0 1.00 1.00 1.00 14566
1 0.98 0.96 0.97 271
accuracy 1.00 14837
macro avg 0.99 0.98 0.98 14837
weighted avg 1.00 1.00 1.00 14837

Train accuracy: 0.9998672022841207

Test accuracy: 0.9999321435841759

AUC: 0.9965928449744463

False Positive Rate: 0.0

False Negative Rate: 0.0068143100511073255

ROC curve
10 7
d
e
"4'
08 7
7’
7
3 g
© 06
L , 4
3 04 7’
= d
4
d
0.2 7 s
4
4
4
0.0 7’ — Features: pc_36_98, pc_4d_e3, pc_ef_f4
00 02 04 06 08 10
False positive rate
precision recall fl-score support
0 1.00 1.00 1.00 58361
1 1.00 0.99 1.00 587
accuracy 1.00 58948
macro avg 1.00 1.00 1.00 58948
weighted avg 1.00 1.00 1.00 58948

35

XGBoost Normalized Confusion Matrices

XGBoost Normalized confusion matrix XGBoost-holdout Normalized confusion matrix

1.0
l 0.8 [0.8
baseline 0.00041 baseline
E -06 E -06
© ©
L L
= -04 = -04
malicious I 0.2 malicious I 0.2
-0.0
baseline malicious baseline malicious
Predicted label Predicted label
SOPHOS

36

SHAP Model Interpretation

SHapley Additive exPlanation
(Lundberg, et al)

Three friends hammer What's each individuals
the “error” Log to the conbribution?

ground together,

Based on Shapely values, a

technique used in game theory i

to determine how much each ‘

ﬁlayer in a collaborative game
as contributed to its success

Each SHAP value measures how Error” log

much each feature in our model
contributes to the prediction,
either positively or negatively

SOPHOS 37

XGBoost Feature Importance

pc_4d_e3

pc_36_98

| | | | | |
0.0 05 1.0 1.5 20 25

mean(|SHAP value|) (average impact on model output magnitude)

SOPHOS 38

XGBoost Partial Dependence Plot

Shows the marginal effect that one or two variables have on the predicted outcome.

Whether the relationship between the target and the variable is linear, monotonic,
or more complex

Let’s see the partial dependence plots for each of the three features

SOPHOS

39

XGBoost Partial Dependence Plot (cont’d)

Feature: ef-f4

e High SHAP value, low counter

value -> Benign
Y. wo® ¢ Low SHAP value, high counter
i .Y value -> Malicious

21 axsase o s 20000
....ﬁ - “n. . o* e A
o] 1 - 10000

0 1000000 2000000 3000000 4000000 5000000
pc_ef f4

40

SOPHOS

XGBoost Partial Dependence Plot (cont’d)

Feature: 4d-e3

P e Low SHAP value, low counter
- SR g value -> Benign

e High SHAP value, high counter
value -> Malicious

0 2000000 4000000 6000000 8000000
pc_4d_e3

SOPHOS 41

XGBoost Partial Dependence Plot (cont’d)

Feature: 36-98

N . P - 1200000
N : == e Low SHAP value, low counter
2q . SRERI L value -> Benign
£) . - 600000 3
sy | :
o ‘e wm s W wlB - 400000 i .
o] [s r— e High SHAP value, high counter
B value -> Malicious
pc_36ic;féooo 400000 500000

42

SOPHOS

SHAP Force Plots

How each feature pushes the prediction to 1/0

higher & lower

base value output value
-6.29 -1.29 3.71 7.94 571 13.71
pc 4d e3 = 7.884e+6 pc_36 98 = 3.413e+5 pc_ef f4 = 3.415e+5

sample order by output value v
91 2,000 4,000 6,000 8,000 le+d 1.2e+4 1.4e+4 1.6e+4 1.8e+4 2e+4 2.2e+4 2.4e+4
|

|
7.936 mpc_ef f4 = 3.742e+5

;71 JPC_4d_e3 = 8.183e+6

-1.29

pc!~36 98 = 3.734e+5 | |,
-6.29- I-FM.ﬂ'u..II" r
lluu-]-l

SOPHOS 43

A Surprise Confirmation

SOPHOS

Some Time Later...

Widely publicized leak of Immunity Inc.'s CANVAS
Exploit toolkit

Included a Spectre-style exploit, with a helpful test flag!
Ran the "in-the-wild" exploit, and our model was able to detect it

SOPHOS

45

Interpretation
Warning: speculation ahead

SOPHOS

Possible Interpretation of Counters: ef-f4

A single support file in Intel VTune names the OXEF event_id as

“CORE_SNOOP_RESPONSE”
Description: “tbd” - thanks Intel
Supposedly only for SKL-X and Cascade Lake...

0xf4 umask not documented
Hypothesis: counter is detecting the responses from other cores when

CLFLUSH invalidates cache lines
Counters showed “malicious” even when the cache sampling was

broken
Supports the theory that this is measuring cache evictions instead of sampling

SOPHOS 47

Possible Interpretation of Counters: 36-98

Haswell-EP documentation names the uncore PMC 0x36 as

"UNC_C_TOR_OCCUPANCY"

0x98 umask not documented
Other umasks refer to a separate MSR being used to filter/select data

Uncore is responsible for LLC coherence though...
Maybe "seeing through" to the uncore PMU because of an
implementation detail?

SOPHOS 48

Q&A

SOPHOS

References

SOPHOS

References

Counter Interpretation:

o
o

Model Interpretation:

(@)
(@)
(@]
o https://towardsdatascience.com/shap-explain-any-machine-learning-model-in-python-24207127cad?

SOPHOS

51

https://dl.acm.org/doi/pdf/10.1109/SC.2018.00021
https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual.html
https://www.nature.com/articles/s42256-019-0138-9
https://github.com/slundberg/shap
https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d

