
Using Undocumented Hardware
Performance Counters to Detect

Spectre-Style Attacks

Nick Gregory
Harini Kannan

CAMLIS 2021

Who We Are

Nick Gregory

• Research Engineer @ Sophos
• Background in binary exploitation and low-level systems

Email: nick.gregory@sophos.com
Twitter: @kallsyms
Website: https://www.nickgregory.me

3

Harini Kannan

• Data Scientist @ Sophos
• Background in Business Statistics
• Currently area of interests:

o System user behavior profiling
o Interpretable ML
o Command line language modeling
o MLOps

Twitter: @jarvision__
Website: https://harini.blog/

4

Introduction

Can we detect exploits using
undocumented hardware performance

counters on Intel CPUs?

Hardware Performance Counters

● A.k.a. Performance Monitoring Counters
● Hardware devices that count specific events across different

Performance Monitoring Units (PMUs)
● Usually used to debug program/system slowness

○ Measuring things like cache misses, branch mispredicts, port usage, etc.

7

A Couple of Years Ago...

Background: Spectre and Meltdown

● CPU-level vulnerabilities that (ab)use
processor speculation
○ Processor guesses what code should be run

before it knows for sure
● Many ways to "do bad things"

○ Speculate over a bounds check (Spectre v1)
○ Speculate through a bad return address

(Spectre RSB)
○ Speculation reading a disabled FPU (LazyFP)
○ And more!

9

Background: Flush+Reload

● One possible technique for exfiltrating data inside speculative execution
● Consistent, easy (with asm access)
● Basic idea:

○ (CL)FLUSH each line in a "timing" array
○ Have speculative execution load one of the lines
○ Subsequent attacker loads will find one line faster than the others

10

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

INACTIVE

INACTIVE

11

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

INACTIVE

INACTIVE

12

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

INACTIVE

INACTIVE

13

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

ACTIVE

INACTIVE

14

Flush+Reload Hypothetical Example

...
if (slow_to_load_usually_true) {

a = out[secret_number & 0x3];

}
...

INACTIVE

INACTIVE

ACTIVE

INACTIVE

15

Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();
if (end-start < threshold) {

secret = i;
}

}

INACTIVE

INACTIVE

ACTIVE

INACTIVE

16

Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();
if (end-start < threshold) {

secret = i;
}

}

INACTIVE

INACTIVE

ACTIVE

INACTIVE

i=0 SLOW

17

Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();
if (end-start < threshold) {

secret = i;
}

}

ACTIVE

INACTIVE

ACTIVE

INACTIVE

i=1 SLOW

18

Flush+Reload Hypothetical Example

for (int i = 0; i < 4; i++) {
uint64_t start = rdtsc();
int a = cache[i];
uint64_t end = rdtsc();
if (end-start < threshold) {

secret = i;
}

}

ACTIVE

ACTIVE

ACTIVE

INACTIVE

i=2 FAST

19

Spectre and Meltdown Detections

● Developed detections shortly after public announcement of the bugs
(early 2018)

● Used 3 perf counters as features
○ Cache misses
○ Cache references
○ Branch misses

● First two form "cache miss ratio"
● Third normalizes to the complexity of the program
● Sampled on a 100ms ticker
● Successfully detects all public proof-of-concepts we’ve tried

20

Spectre and Meltdown
Support Vector Machine - Decision Function visualized

21

ca
ch

e-
m

iss
 b

ra
nc

h-
m

iss
 ra

tio

cache-miss ratio

● Plot shows a part of the decision boundary learnt by the
SVM model

● Blue shaded region represents benign surface

● Rust shaded region represents malicious surface

● Superimposing the test data points as a scatter plot over
this decision boundary where green data points represent
baseline data and red data points represent spectre/
meltdown variants

Support Vector Machine
Features: Cache miss ratio, Cache miss - Branch miss ratio

22

Spectre and Meltdown

● This detection can be easily defeated though!
● Mix-in cache friendly code into the proof-of-concept
● Bypasses existing cache-miss-ratio-based detections

○ Lets us achieve an arbitrarily low cache-miss ratio
○ Little runtime overhead (since it's trying to be extremely cache friendly)

23

Spectre and Meltdown in Hiding

// stuff that will be read in a cache-friendly way to evade detection
unsigned long long stuff[65536];

...
// do some stuff that's really cache-nice to throw off detection
register unsigned long long ctr = 0;
for (register int round = 0; round < 80000000; round++) {

register unsigned long long *p = &stuff[round % (sizeof(stuff) /
sizeof(stuff[0]))];

ctr += *p;
*p = ctr;

}
...

24

Our Research

Hardware Performance Counters

● Space for 256*256 counters
● Number of documented counters (and what they count) varies per

microarchitecture
○ Only a few hundred documented on most microarchitectures

● What if we read all of them (even the undocumented ones)?
● Turns exploit detection into a blackbox ML problem

26

Counter Selection

● Ran four programs and sequentially gathered all counters 10 times
○ Optimized/minified _exit(0);
○ Scikit benchmark
○ Spectre v4
○ Spectre v4 in Hiding

27

Counter Selection (cont’d)

● Removed always zero counters
● Removed counters that had a difference between scikit benchmark and

spectre v4 less than 95%
● Removed counters that differed more than 5% between spectre v4 and

spectre v4 "in hiding"

● Left with 81 counters
● Interestingly no documented counters

28

Using Undocumented Counters

Exploits of Interest

• Meltdown (aka Spectre v3 - rogue data cache load)
• Spectre v1 (bounds check bypass)
• Spectre v2 (branch target injection)
• Spectre v4 (speculative store bypass)
• Ghosting_spectrev4 (speculative store with evasive changes)

30

Data Collection

● Used Linux perf tool
● Along with the exploits mentioned before, collected data for the

following baseline programs:
○ LibJIT unit tests
○ Scikit-learn benchmark tests
○ Phoronix test suite
○ Linux defconfig compile
○ Sort function
○ Mibench benchmarks

● Counters were measured every 100ms
● Each program was run five times

31

Algorithms used

• Support Vector Machine

• Random Forest

• eXtreme Gradient Boosting (XGBoost)

• Histogram based Gradient Boosting (HGBoost)

32

Detecting Spectre (Again)

Model results
Features: 36-98, 4d-e3, ef-f4

F1 F2 F3 intel_arch model precision recall fpr fnr auc acc meltdown spectre1 spectre2 spectre4 spectre4_new

36_98 4d_e3 ef_f4 ivybridge SVM 1 0.85 0 0.3 0.85 0.99 no no no yes yes

36_98 4d_e3 ef_f4 ivybridge XGBoost 0.98 0.94 0.0004 0.12 0.94 0.99 yes yes yes yes yes

36_98 4d_e3 ef_f4 ivybridge RF 1 0.86 0 0.28 0.86 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 ivybridge HGBoost 0.98 0.94 0.0004 0.112 0.94 0.99 yes yes no yes yes

36_98 4d_e3 ef_f4 haswell SVM 0.98 0.93 0.0005 0.13 0.94 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 haswell XGBoost 0.99 0.98 0.0004 0.04 0.98 0.99 yes yes yes yes yes

36_98 4d_e3 ef_f4 haswell RF 1 0.97 0.0001 0.06 0.97 0.99 yes no no yes yes

36_98 4d_e3 ef_f4 haswell HGBoost 0.98 0.98 0.0008 0.04 0.98 0.99 yes yes yes yes yes

34

XGBoost AUC for Test and Hold-out Dataset

35

XGBoost Normalized Confusion Matrices

36

SHAP Model Interpretation

• SHapley Additive exPlanation
(Lundberg, et al)

• Based on Shapely values, a
technique used in game theory
to determine how much each
player in a collaborative game
has contributed to its success

• Each SHAP value measures how
much each feature in our model
contributes to the prediction,
either positively or negatively

37

XGBoost Feature Importance

38

XGBoost Partial Dependence Plot

• Shows the marginal effect that one or two variables have on the predicted outcome.

• Whether the relationship between the target and the variable is linear, monotonic,
or more complex

• Let’s see the partial dependence plots for each of the three features

39

• High SHAP value, low counter
value -> Benign

• Low SHAP value, high counter
value -> Malicious

XGBoost Partial Dependence Plot (cont’d)

40

Feature: ef-f4

XGBoost Partial Dependence Plot (cont’d)

● Low SHAP value, low counter
value -> Benign

● High SHAP value, high counter
value -> Malicious

41

Feature: 4d-e3

XGBoost Partial Dependence Plot (cont’d)

● Low SHAP value, low counter
value -> Benign

● High SHAP value, high counter
value -> Malicious

42

Feature: 36-98

How each feature pushes the prediction to 1/0

SHAP Force Plots

43

A Surprise Confirmation

Some Time Later...

● Widely publicized leak of Immunity Inc.'s CANVAS
○ Exploit toolkit

● Included a Spectre-style exploit, with a helpful test flag!
● Ran the "in-the-wild" exploit, and our model was able to detect it

45

Interpretation
Warning: speculation ahead

Possible Interpretation of Counters: ef-f4

● A single support file in Intel VTune names the 0xEF event_id as
“CORE_SNOOP_RESPONSE”
○ Description: “tbd” - thanks Intel
○ Supposedly only for SKL-X and Cascade Lake…
○ 0xf4 umask not documented

● Hypothesis: counter is detecting the responses from other cores when
CLFLUSH invalidates cache lines

● Counters showed “malicious” even when the cache sampling was
broken
○ Supports the theory that this is measuring cache evictions instead of sampling

47

Possible Interpretation of Counters: 36-98

● Haswell-EP documentation names the uncore PMC 0x36 as
"UNC_C_TOR_OCCUPANCY"
○ 0x98 umask not documented
○ Other umasks refer to a separate MSR being used to filter/select data

● Uncore is responsible for LLC coherence though…
● Maybe "seeing through" to the uncore PMU because of an

implementation detail?

48

Q&A

References

References

● Counter Interpretation:
○ https://dl.acm.org/doi/pdf/10.1109/SC.2018.00021
○ https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-scalable-memory-family-

uncore-performance-monitoring-reference-manual.html

● Model Interpretation:
○ https://www.nature.com/articles/s42256-019-0138-9
○ https://github.com/slundberg/shap
○ https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d
○ https://towardsdatascience.com/shap-explain-any-machine-learning-model-in-python-24207127cad7

51

https://dl.acm.org/doi/pdf/10.1109/SC.2018.00021
https://software.intel.com/content/www/us/en/develop/download/intel-xeon-processor-scalable-memory-family-uncore-performance-monitoring-reference-manual.html
https://www.nature.com/articles/s42256-019-0138-9
https://github.com/slundberg/shap
https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d

