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ANTIVIRUS CORRELATION

 Some groups of AVs known to make correlated labeling decisions

* Conventional wisdom in industry has a few explanations:
e Copying results of leading vendors
e Different AV products using the same engine

e Signature sharing

* All explanations involve “first order” interactions

* Creates direct link between labeling decisions of two AVs
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WHY DOES THIS MATTER?

e Aggregated results from a collection of AVs is much better than
using a single AV

* Detection —is it malicious or benign?
* Classification — which family does it belong to?

* Correlations between AVs can influence voting and other
aggregation approaches




RESEARCH QUESTIONS

* Are existing assumptions about AV correlation correct?

* |s AV agreement predominantly due to first-order interactions?
* When detecting files as malware?
* When classifying malware by family?

* How do first-order interactions between AVs change over time?




THE DATA

e Using 25,100,286 VirusTotal scan reports over 10-year period

 Malware samples are from the VirusShare dataset

e 93 distinct AVs .
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ANTIVIRUS AGREEMENT

 Before we look into first-order interactions, we need to measure
how frequently AVs agree with each other

Detection Percent Agreement

Classification Percent Agreement
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ANTIVIRUS SYNCHRONICITY

¢ SynCh r0n|C|ty |S the average VirusTotal-VT Monthly Synchronicity
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THE R1SM DECOMPOSITION

* Rank-1 Similarity Matrix Decomposition

« D =Y*triu(r;r],1)

 Decomposes a similarity matrix D into a sum of k rank-1 outer
products with shared, non-negative weights

* Because the components 1,1, ...1; have rank 1, they
manifest first-order interactions between objects




SOLVING THE R1SM DECOMPQSITION

e The R1SM decomposition typically has multiple solutions

 We developed a greedy algorithm for solving R1SM

e At each iteration, identifies a component that explains as
much of the remaining similarity matrix as possible

* Stops when a component fails to explain a small percentage o
of the similarity matrix (0 = 0.1% by default)

 More details in paper!
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APPLYING R1SM TO ANTIVIRUS SCAN DATA

* Applied R1SM to the detection and classification percent
agreement similarity matrices

e Detection percent agreement:
e k = 16 components that explain 60.596% of similarity matrix

* Classification percent agreement:
e k = 21 components that explain 58.394% of similarity matrix




APPLYING R1SM TO ANTIVIRUS SCAN DATA
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RTSM-T: EXTENDING R1SM TO TIME-SERIES DATA

* R1SM decomposition of a time-series of similarity matrices

 Shares information across all matrices as a function of their
spatial relationships in time

* Implemented as a deep neural network over positional
embeddings




APPLYING R1SM-T TO ANTIVIRUS SCAN DATA

* Decomposed a time-series of similarity matrices representing
monthly detection and classification agreement

* Detection percent agreement:
e k = 26 components that explain 73.709% of time-series

* Classification percent agreement:
 k = 26 components that explain 67.196% of time-series




R1SM-T MONTHLY EXPLAINED DETECTION
SYNGHRONICITY

Explained Synchronicity




R1SM-T MONTHLY EXPLAINED CLASSIFICATION
SYNCHRONICITY
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RTSM-T DETECTION TIME-SERIES COMPONENT 1
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RTISM-T GLASSIFICATION TIME-SERIES
COMPONENT 1
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CONCLUSIONS

e First-order interactions alone are not sufficient for modeling the
complex interactions between AVs

 We do not fully understand causes of AV correlation

* Relationships between AVs more volatile than previously thought

* Future AV aggregation approaches should weight voters as both a
function of correlation and time
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