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* Behaviour Response of CFA Charter Holders (Olsen, Robert A. "Professional investors as naturalistic decision makers: Evidence and market implications." The 
Journal of Psychology and Financial Markets 3.3 (2002): 161-167.) 

Why * 

2



Why ?* 

•Human Analyst •Noise/Errors/Drifts
•Missed Detection   

•High performant 
ML Algorithms

• Human Analyst 

Not Yet 
Relevant 

but may be 
important 

High/Over 
Confidence 

/Bias 

Obvious 
Under 

Confidence 
/Unknowns  

Methods which improve 
ML performance 

Methods  which 
improve analyst 
performance 



4

Explanations 
• The field of explanations of intelligent systems was 

active in the 1970s for expert systems; 1980’s for  neural 
networks; and then to recommendation systems in the 
2000s.

• Explainability methods 
– Post-hoc/During/Pre-hoc
– Scope - Local, Global 
– Dependency - Model, Data and Domain 

• Interpretability methods coupled with the human in the 
loop improves the trust and security in the decision 
making process of ML systems.
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Explanations in  Security Domain 
• Problems in Security Domain

– Imbalanced DataSets
– Attribution of threat and Context is important and hard to infer.
– Threats are always evolving and there is a need to improve robustness of underlying systems.
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Goals and Motivation
• Security analysis of XAI methods

– How can an attacker, given only outputs of explanation method and model predictions, can conduct powerful 
black-box model extraction, membership inference attacks?

– How explanation outputs facilitate the generation of adversarial samples and poison/backdoor samples to 
evade the underlying classifier

• Motivating Example – Credential Stuffing (Membership Inference attack)   
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Threat Model Assumptions 
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Counterfactuals (why/why-not)
• Counterfactual data instances of the input have

– Similar feature values as input
– Different model predictions from that of input
– Lay closer to the decision boundary of an input class 
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Class Decision Boundary (AE vs CF)
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Attack Method

• Given a black-box access to a target model 𝑇 prediction interface 𝑇 𝑥 = 𝑦 , 𝑥!" counter factual , 
𝐸 𝑥 = 𝑥!" explanation interface, 𝐷#$% auxiliary dataset and 𝑆 a surrogate model

– Attacker aims to compromise the confidentiality and integrity of the underlying ML system

• Explanation-based Poisoning Attack
– Identify and Perturb robust features, which are consistently same across their counterfactual class.

• Explanation-based Adversarial Sample Generation 
– Adapt Counterfactual method which works in feature space to sample space.

• Explanation-based Membership Inference  Attack 
– 1-Class Nearest neighbor classifier for each class is  trained on counterfactuals to establish membership 

• Explanation-based model extraction
– Knowledge distillation technique to transfer knowledge from the target model to the surrogate model
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DataSets
• MEA 

– CICIDS17 Network Traffic dataset which contains a wide range of attack types like SSH brute force, Botnet, 
DoS, DDoS, web, and infiltration

• AE  and Poisoning Attack 
– 30120 malware from virus share and for benign samples we scrapped 20334 clean files from free ware sites 

• MIA 
– Leaked Password Dataset -- The dataset consists of 1.4 billion email password pairs with 1.1 unique emails 

and 463 million unique passwords. This dataset is aggregated password leaks from different incidents.
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Results 



13

MIA and MEA Comparison
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AE and Poisoning Attack Comparison
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Defense Discussion
• CF methods share a large set of similarities with adversarial examples concepts 

– Adapting methods from adversarial defense literature 
• Noise based Defense Intuition 

– Defender has no control over the attacker’s full training data but only a portion of it.
– ML model aims to learn the mapping function from the feature space to the label space from the training 

samples. 
• Defender can transform the counterfactual samples so the learned model (surrogate) has a strong correlation 

between the labels and noise of the feature space instead of only features.
• Adding noise to samples 

– Individual CF sample and All CF samples of same class 
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Limitations and Future work 

• MEA 
– Methods which optimize on multiple properties of CF’s improve the stolen model accuracy 
– We only tested non-differential models 

• MIA 
– Methods which do not employ latent space to search for CF need large number of queries.
– Learning password rules and investigate how CF  attack can speed up the password cracking methods 

• AE and Poisoning 
– The functionality preserving  transformation functions applied on the binary are biased towards static 

features. 
– Our results may not be valid when AV engines use both static and dynamic analysis to make a decision. 
– CF methods can help attackers to find quicker ways to find adversarial/poisoned samples, 
instead of solving a hard-to converge black-box optimization problem in input space. 



Thanks 

TIFS Paper -- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9555622
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