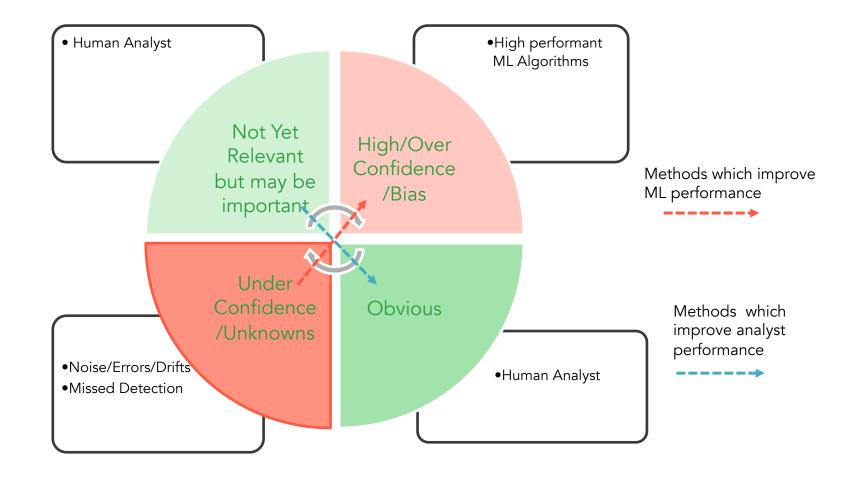
Adversarial XAI methods in Cybersecurity

Aditya Kuppa and Nhien-An Le-Khac UCD

Why *

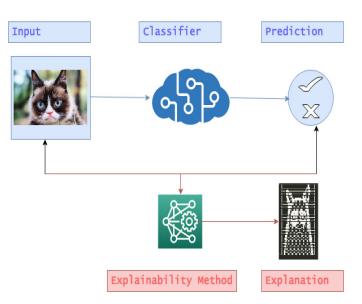
Question 1. The ability to construct a coherent and complete "story" with the facts of a situation is the most important task when making a decision or recommendation.

Agree 93% Disagree 7% Question 2. As a forecasting/recommendation task becomes more complex and difficult, I tend to rely more on judgment and less on formal, quantitative analysis.


Agree 64% Dis

Disagree 36%

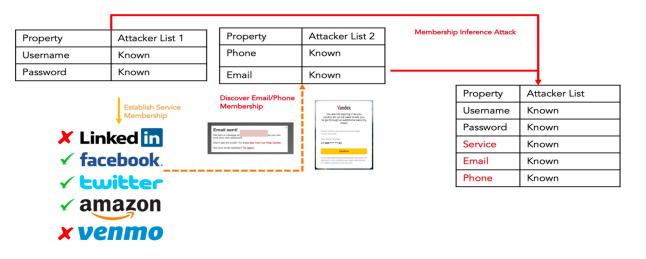
Question 8. As I become more uncertain about my ability to predict outcomes, I give greater weight to negative information about alternatives. Agree 86% Disagree 14%


* Behaviour Response of CFA Charter Holders (Olsen, Robert A. "Professional investors as naturalistic decision makers: Evidence and market implications." The Journal of Psychology and Financial Markets 3.3 (2002): 161-167.)

Why ?*

Explanations

- The field of explanations of intelligent systems was active in the 1970s for expert systems; 1980's for neural networks; and then to recommendation systems in the 2000s.
- Explainability methods
 - Post-hoc/During/Pre-hoc
 - Scope Local, Global
 - Dependency Model, Data and Domain
- Interpretability methods coupled with the human in the loop improves the trust and security in the decision making process of ML systems.


Explanations in Security Domain

- Problems in Security Domain
 - Imbalanced DataSets
 - Attribution of threat and Context is important and hard to infer.
 - Threats are always evolving and there is a need to improve robustness of underlying systems.

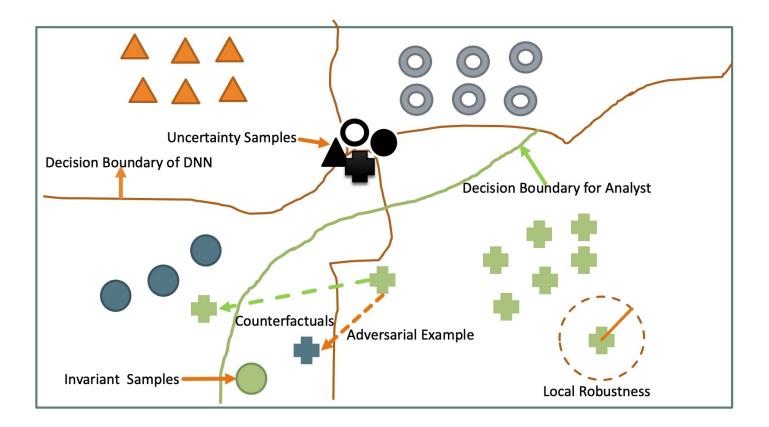
	ALERT
You are not signing in as you usually do, so we need to ask you to go through an additional security check	
Please confirm the phone number linked to your account.	
Your phone number: +7 000 ***-**-43	Nonlinit Nonlinit
Confirm	wint (a)
If you had difficulty accessing your account, try signing in from a device you have used before. Or restore access to the account	No. may 240 No. max
	If you had difficulty accessing your account, try signing in from a device you have used before.

Goals and Motivation

- Security analysis of XAI methods
 - How can an attacker, given only outputs of explanation method and model predictions, can conduct powerful black-box model extraction, membership inference attacks?
 - How explanation outputs facilitate the generation of adversarial samples and poison/backdoor samples to evade the underlying classifier
- Motivating Example Credential Stuffing (Membership Inference attack)

Threat Model Assumptions

CHARACTERISTIC	Түре	MEA [26]	MIA [68]	PA [67]	AE [45]
	TRAINING DISTRIBUTION	×	×	1	×
Knowledge	FEATURE SET	1	~	~	1
	FEATURE EXTRACTOR	1	~	~	 ✓
	FEATURE TRANSFORMERS	 ✓ 	1	~	 ✓
	INFERENCE API	✓ ✓	~	~	1
	EXPLANATIONS INTERFACE/METHOD	1	~	~	~
	CONFIDENCE INTERVALS	1	~	1	 ✓
Goal/Intent	COMPROMISING INTEGRITY (EVASION)	×	×	✓	✓
	COMPROMISING PRIVACY	✓ ✓	1	X	×
Q 1:1:4	MANIPULATE TRAINING DATA	×	×	✓	×
Capability	MANIPULATE TEST DATA	×	~	X	✓
<u>C</u> turate and	TRAIN A SURROGATE MODEL FOR PARAMETER EXTRACTION	X	~	X	×
Strategy	TRAIN A SURROGATE MODEL FOR QUERY REDUCTION	1	×	X	✓
	SATISFY DOMAIN CONSTRAINTS	×	~	1	~
Frequency	ITERATIVE	✓	1	1	~
Perturbation Scope	INSTANCE SPECIFIC	✓	~	1	~
Perturbation Constraints	Optimisation	✓	×	~	X
renurbation Constraints	Domain	✓ ✓	~	1	 ✓


Counterfactuals (why/why-not)

- Counterfactual data instances of the input have
 - Similar feature values as input
 - Different model predictions from that of input
 - Lay closer to the decision boundary of an input class

$$x_{cf} = \operatorname*{argmin}_{x_{cf1}, \dots, x_{cfk}} \mathcal{L}(\mathcal{T}(x_{cf}), \mathcal{T}(x)) + Dist(x_{cf} - x)$$

Method	${\cal L}$	Dist	$\mathbf{CF} \ \mathbf{per} \ x$	Optimisation Method
Latent CF [38]	Latent Vector Loss	ℓ_1	1	Gradient Descent
DICE [39]	Hinge-loss	ℓ_1 and Median Absolute Deviation(MAD)	k	Gradient Descent
Permute Attack [40]	-	l_2	1	Genetic Algorithm

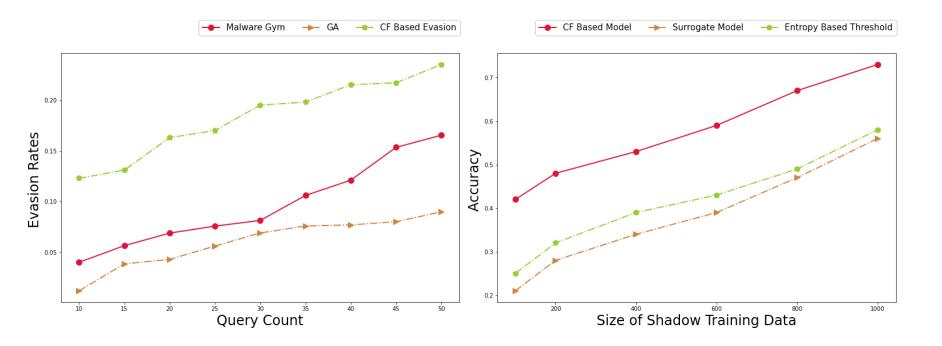
Class Decision Boundary (AE vs CF)

Attack Method

- Given a black-box access to a target model T prediction interface T(x) = y, x_{cf} counter factual, $E(x) = x_{cf}$ explanation interface, D_{aux} auxiliary dataset and S a surrogate model
 - Attacker aims to compromise the confidentiality and integrity of the underlying ML system
- Explanation-based Poisoning Attack
 - Identify and Perturb robust features, which are consistently same across their counterfactual class.
- Explanation-based Adversarial Sample Generation
 - Adapt Counterfactual method which works in feature space to sample space.
- Explanation-based Membership Inference Attack
 - 1-Class Nearest neighbor classifier for each class is trained on counterfactuals to establish membership
- Explanation-based model extraction
 - Knowledge distillation technique to transfer knowledge from the target model to the surrogate model

DataSets

- MEA
 - CICIDS17 Network Traffic dataset which contains a wide range of attack types like SSH brute force, Botnet, DoS, DDoS, web, and infiltration
- AE and Poisoning Attack
 - 30120 malware from virus share and for benign samples we scrapped 20334 clean files from free ware sites
- MIA
 - Leaked Password Dataset -- The dataset consists of 1.4 billion email password pairs with 1.1 unique emails and 463 million unique passwords. This dataset is aggregated password leaks from different incidents.


Results

Аттаск Туре	\mathcal{D}_{aux}	EXPLANATION Method	${\mathcal T}$	ORIGINAL Accuracy	Evasion Accuracy
Adversarial Attack	MALWARE	Permute	AV1 AV2	93.5% 94.7%	65.23% 41.89%
				Poisoning Percent	ACCURACY DROP
			67.).	0.5%	62.4%
			GBM	1%	76.23%
POISONING ATTACK	MALWARE	Permute		2%	87.24%
				0.5%	30.9%
			NN	1%	50.89%
			2%	65.31%	
			3%	79.48%	
Membership Inferen	CE LEAKED PASS	SWORDS LATENT-CF	AutoEncoder	Method Model Entropy CF	ACCURACY/QUERIES 49.46/1000 54.17/1000 73.17 /1000
MODEL EXTRACTION	CICIDS	DICE	AutoEncoder	Model T KN KD CF	ACCURACY 98.02 78.91 53.89 93.54

MIA and MEA Comparison

AE and Poisoning Attack Comparison

Defense Discussion

- CF methods share a large set of similarities with adversarial examples concepts
 - Adapting methods from adversarial defense literature
- Noise based Defense Intuition
 - Defender has no control over the attacker's *full* training data but only a portion of it.
 - ML model aims to learn the mapping function from the feature space to the label space from the training samples.
- Defender can transform the counterfactual samples so the learned model (surrogate) has a strong correlation between the labels and noise of the feature space instead of only features.
- Adding noise to samples
 - Individual CF sample and All CF samples of same class

$$T_s = \begin{cases} None & \text{No transformation} \\ \phi, & \text{Random noise } [-1,1] \\ \delta_{x_i}, & \text{Adv. noise } [-\epsilon,\epsilon] \\ \delta_{y_i} & \text{Adv. noise } [-\epsilon,\epsilon] \end{cases}$$

T_s	Accuracy
None	95.6
ϕ	87.4
δ_{x_i}	37.4
δ_{y_i}	28.22
$\delta_{x_i} + \phi$	32.22
$\delta_{y_i} + \phi$	18.22

Limitations and Future work

• MEA

- Methods which optimize on multiple properties of CF's improve the stolen model accuracy
- We only tested non-differential models
- MIA
 - Methods which do not employ latent space to search for CF need large number of queries.
 - Learning password rules and investigate how CF attack can speed up the password cracking methods
- AE and Poisoning
 - The functionality preserving transformation functions applied on the binary are biased towards static features.
 - Our results may not be valid when AV engines use both static and dynamic analysis to make a decision.
 - CF methods can help attackers to find quicker ways to find adversarial/poisoned samples,

instead of solving a hard-to converge black-box optimization problem in input space.

Thanks

TIFS Paper -- https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9555622