tANDIANT

Lightweight, Emulation-Assisted
Malware Classification

Xigao Li, David Krisiloff, Scott Coull
Stony Brook University

Mandiant Data Science

Who We Are

Graduate student at Stony Brook Manager, Data Science at Director, Data Science Research at
University Mandiant Mandiant

Mandiant Data Science Intern 2021

M ©2021 Mandiant

Outline

Emulation Intro Experiment Design First Attempt Modifying the Emulator Results
EEEEEEEE
EEEEEENEN i 1
EEREOOOO0O - |
EEEOOOO00 N
EEEEEEEN R I
EEEEEEEN A L
EEEOOO000 | U B Y
EEEEEENEN
Background and Emulation features Things don’t go Modifying things Accuracy and speed
questions we'll and data sets quite as planned for ML purposes, results for
answer today not reverse goodware/malware
engineering and malware family
tasks

M ©2021 Mandiant

Malware Analysis

e Static: Does this look like malware?
* Not running program
* Look for static features like strings, DLLs, etc.
* May encounter difficulty on obfuscation or packing

* Fast enough to block malware execution

* Dynamic: Does this behave like malware?
* Runs the program in specific environment

* Record events logs during execution

* More effective against obfuscation and packing

* Not fast enough to block malware execution
M ©2021 Mandiant

Malware Analysis

* Dynamic: Does this behave like malware? Sandbox
* Runs the program in specific environment ||~
* Record events logs during execution

* More effective against obfuscation and packing

* Not fast enough to block malware execution
M ©2021 Mandiant

Dynamic Analysis

Emulator

J190=TR00000@0~8 K #9500

Mocks execution — no OS
Implement or fake system calls itself
Lighter weight

Runs a full OS
OS implements the system calls
 Heavy weight — need a system image

M ©2021 Mandiant

Machine Learning + Emulation?
Windows PE in particular

* There are numerous emulators available

* Pre-existing work on ML classifiers based on
emulation
* Alot on Android
* Microsoft has published work on PE emulation + ML

* We’re assuming a bunch of AV companies have
something similar

M ©2021 Mandiant

Showcase

In our knowledge, Unicorn has been used by 123 following products (listed in no particular order).

Qiling: Cross-platform & multi-architecture lightweight sandbox.

UniDOS: Microsoft DOS emulator.

Radare2: Unix-like reverse engineering framework and commandline tools.
Usercorn: User-space system emulator.

Unicorn-decoder: A shellcode decoder that can dump self-modifying-code.
Univm: A plugin for x64dbg for x86 emulation.

PyAna: Analyzing Windows shellcode.

GEF: GDB Enhanced Features.

Pwndbg: A Python plugin of GDB to assist exploit development.
Eli.Decode: Decode obfuscated shellcodes.

IdaEmu: an IDA Pro Plugin for code emulation.

Roper: build ROP-chain attacks on a target binary using genetic algorithms.
Sk3wlIDbg: A plugin for IDA Pro for machine code emulation.

Angr: A framework for static & dynamic concolic (symbolic) analysis.
Cemu: Cheap EMUIator based on Keystone and Unicorn engines.
ROPMEMU: Analyze ROP-based exploitation.

BrolDS_Unicorn: Plugin to detect shellcode on Bro IDS with Unicorn.
UniAna: Analysis PE file or Shellcode (Only Windows x86).

ARMSCGen: ARM Shellcode Generator.

TinyAntivirus: Open source Antivirus engine designed for detecting & disinfecting polymorphic
virus.

Patchkit: A powerful binary patching toolkit.

Arpilnik: Very simple arithmetric expression compiler for x86_64 machines.
Shellbug: Basic command-line, text-based, shellcode debugger.
GCTF-Challenges: An assembly based puzzle at GryphonCTF 2016.

Sibyl: A Miasm2 based function divination.

Kadabra: A blanked execution framework.

Example emulation packages using the
unicorn CPU emulator

https://www.unicorn-engine.org/showcase/

R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2019-Octob, pp. 571-578, 2019.

B. Amos, H. Turner, and J. White, 2013 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666—-1671, 2013.

https://www.unicorn-engine.org/showcase/

Machine Learning + Emulation? .

Wl n d OWS P E | n p a rt | C U | a r In our knowledge, Unicorn has been used by 123 following products (listed in no particular order).

o Qiling: Cross-platform & multi-architecture lightweight sandbox.
o UniDOS: Microsoft DOS emulator.

° Th e re a re n u m e ro u S e m u | ato rS ava i | a b I e » Radare2: Unix-like reverse engineering framework and commandline tools.

* Pre-existing wo .
emulation How easy is this to accomplish nowadays?

. (Especially if you don’t have a team maintaining your emulator)
* Alot on Androic

algorithms.

* Microsoft has pUn

Sk3wlIDbg: A plugin for IDA Pro for machine code emulation.
Angr: A framework for static & dynamic concolic (symbolic) analysis.

Cemu: Cheap EMUlator based on Keystone and Unicorn engines.

ROPMEMU: Analyze ROP-based exploitation.

BrolDS_Unicorn: Plugin to detect shellcode on Bro IDS with Unicorn.

UniAna: Analysis PE file or Shellcode (Only Windows x86).

ARMSCGen: ARM Shellcode Generator.

TinyAntivirus: Open source Antivirus engine designed for detecting & disinfecting polymorphic
virus.

Patchkit: A powerful binary patching toolkit.

Arpilnik: Very simple arithmetric expression compiler for x86_64 machines.

Shellbug: Basic command-line, text-based, shellcode debugger.

GCTF-Challenges: An assembly based puzzle at GryphonCTF 2016.

Sibyl: A Miasm2 based function divination.

Kadabra: A blanked execution framework.

* We're assuming a bunch of AV companies have
something similar

Example emulation packages using the
unicorn CPU emulator

N https://www.unicorn-engine.org/showcase/
I 2021 Mandiant R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2019-Octob, pp. 571-578, 2019.
B. Amos, H. Turner, and J. White, 2013 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666—-1671, 2013.

https://www.unicorn-engine.org/showcase/

Machine Learning + Emulation?

Showcase
W | n d OWS P E | n p a rt | C U | a r In our knowledge, Unicorn has been used by 123 following products (listed in no particular order).
o Qiling: Cross-platform & multi-architecture lightweight sandbox.
H o UniDOS: Microsoft DOS emulator.
[J
Th e re a re n u m e ro u S e m u | ato rS ava I |a b I e o Radare2: Unix-like reverse engineering framework and commandline tools.
o ying-code

M

Pre-existing wo
emulation How easy is this to accomplish nowadays?

A lot on Androi (Especially if you don’t have a team maintaining your emulator)
O

algorithms.

Microsoft has pUB

¢ Sk3wIDbg: A plugin for IDA Pro for machine code emulation.
o Angr: A framework for static & dynamic concolic (symbolic) analysis.

Welre assumlﬂg 3 bunCh Of AV Companles have : Cemu: Cheap EMUIator based on Keystone and Unicorn engines.
something simil : S

What does the emulation accuracy / compute speed / il
model accuracy tradeoff(s) look like? et

016.

e Kadabra: A blanked execution framework.

Example emulation packages using the
unicorn CPU emulator

https://www.unicorn-engine.org/showcase/
R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2019-Octob, pp. 571-578, 2019.
B. Amos, H. Turner, and J. White, 2013 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666—-1671, 2013.

©2021 Mandiant

https://www.unicorn-engine.org/showcase/

lAN DIANT ADVANTAGE PLATFORM SERVIC

THREAT RESEARCH

Speakeasy Emulation of Malicious
Shellcode With Speakeasy
A lightweight emulator aiming for

acquiring the triage reports in ANDREW DAVIS
automated Way AUG 26, 2020 | 15 MINS READ

Open-Source package from Mandiant

#THREAT RESEARCH

Designed for Windows malware
Configurable environments

Can add various limitations for pa rtial In order to enable emulation of malware samples at scale, we have developed the Speakeasy.

runn | ng emulation framework. Speakeasy aims to make it as easy as possible for users who are not
malware analysts to acquire triage reports in an automated way, as well as enabling reverse
engineers to write custom plugins to triage difficult malware families.

Originally created to emulate Windows kernel mode malware, Speakeasy now also supports user
mode samples. The project's main goal is high resolution emulation of the Windows operating
system for dynamic malware analysis for the x86 and amd64 platforms. Similar emulation
frameworks exist to emulate user mode binaries. Speakeasy attempts to differentiate from
other emulation frameworks the following ways:

e Architected specifically around emulation of Windows malware

M ©2021 Mandiant

o Supports emulation of kernel mode binaries to analyze difficult to triage rootkits

Experiment Design

Experiment Design

EEEEEEERN
EEERCEN
EEERCEN
ECEEROCEN
ECEER0OCEN
ECEER0OCEN

Emulation features
and data sets

M ©2021 Mandiant

Experimental Setup (1)

Emulation Pipeline

Parallel Speakeasy Process

Speakeasy Proc 1
Emulation

Python

orocess Speakeasy Proc 2

Reports

Speakeasy Proc n

Controlled emulation process, limits on:
* Execution time
 RAM

* Total # of instructions

M ©2021 Mandiant

What Do We Get From Emulation?

Instruction counter ; ; Returned
0x401688 advapi32.CryptCreateHash Ox1
0x4016a8 advapi32.CryptHashData Ox1
0x401724 user32.wsprintfA 0x2

Sequence of external APIs called

Loaded binary file 61129 33587

Program stack 106541 62419

Memory access statistics

M ©2021 Mandiant

Arguments

"0x680", "CALG_MD5",
"ox0", ...

"0x2804","0x50000", ...

”00"’ II%OZXI!

Execute

492185

14

Is This Useful for Classification?

6/770 @/77‘/ @/770 @/77(/ @/77(/ 6/770 @/77(/ @/77‘/ @/77(/ @/77(/ @/77(/ @/77(/ @/;7(/ @/77(/ @/770 @/77(/ @/77‘/ @/770 @/770 6/770
O,

100

80
Q
S
O
E 60
=
+— 40
c
Q
&)
S
Q 20
o

o

./77 .S(”/- ./7) 'Ob' ./77 ./77 ./77 'S‘(}, ./77 '@,\, ./77 ',O/~ ./77 . ./77 .Ob' ./77 .CO ‘Q
Qe Yty Uy Tt Uy Uy Uy Ut gy gy Pore Uy eg Uy Uy gy Tt Uy A’-a,
. '?), '? .O@f '~ sy, 9 O/@ *Sg 68 0/83 \6/:9 ./7(‘0 \be .///7" . S/ 'S@(* \0/71/ 60/}
A Upe oy o gy, NGy ~op 92 K3 %%, Y Ing s, Ver ot

M) oo Name of allocated memory block

Is This Useful for Classification?

100

8

o

6

o

4

o

2

Percent malware

o

M) oo Name of allocated memory block

16

Is This Useful for Classification?

100

8

o

6

o

4

Percent malware

2

o

o

Why load a DLL into memory?

To find/use a function,
without listing it in the import
table

M) oo Name of allocated memory block

17

Feature Engineering

APIs hash trick
bag of words
n-grams?
Memory hash trick
section
names bag of words
Memory read/write/execute counts as integers
access

©2021 Mandiant

X[h(name +” — read”)] += reads

18

Feature Engineering

APIs hash trick
bag of words

n-grams?

—

Memory hash trick
section

names bag of words

Memory read/write/execute counts as integers
access

X[h(name +” — read”)] += reads

For this talk we’re sticking to
bag of individual words

19

Feature Engineering

M

For this talk we’re sticking to
bag of individual words

—

APIs hash trick
bag of words
n-grams?
Memory hash trick
section
names bag of words
Memory read/write/execute counts as integers
access

©2021 Mandiant

X[h(name +” — read”)] += reads

Provides potentially
interesting evidence of
unpacking (write + execute) 20

4

Experimental Setup (2)

How we’re modeling

Just the files that emulated All of EMBER
No emulation

EEEEEEERE . Using only emulation HE N BB BN . ysingstaticand
EEEEEEEDE features EEEEREEEN emulation features
EEEEEEEREDN HENE 1000
EEEEEEER Makes measuring changes N N RENEEEEEEE More production realistic
EEEEEEERERN to the emulator easy HEEEEEENEBN
EEEEEEERER HEEEEEENEBN Missing emulation
EEEEEEERN lgnores a bunch of files EENE][] features are encoded as -1
EEEEEEEREDN (.NET) EEEEEEENR
Emulation \ Static
features features

M

©2021 Mandiant

We'll look primarily at goodware/malware classification,
but we also experiment with malware family classification

21

A Note on Model Choice

LightGBM Neural Network

X
/ J \ API features ﬂ ﬂ
Memory

We explored both LightGBM (gradient boosted trees) and various neural network architectures. We got the best
performance from LightGBM, but our search was hardly exhaustive.

M ©2021 Mandiant

First Attempt

First Attempt

Things don’t quite
go as planned

M ©2021 Mandiant

Modeling - Errors

25k
20k

15k

Count

10k

0.2

M ©2021 Mandiant

Model results on EMBER

0.4 0.6
P(malware)

B Malware
B Goodware

24

Modeling - Errors B Malware

B Goodware
Model results on EMBER

25k l

20k

Correct classifications

15k

Count

10k

=S

0 0.2 0.4 0.6 0.8

P(malware)
M ©2021 Mandiant 25

Modeling - Errors B Malware

B Goodware
Model results on EMBER

25k
20k

15k

Count

10k

Incorrect classifications

0 0.2 0.4 0.6 08 1

P(malware)
M ©2021 Mandiant

Modeling - Errors B Malware

B Goodware

Model results on EMBER

25k
20k “Unsure” classifications
These are emulations that have 0 API calls
) The first API call wasn’t supported
15

Count

-----,

10k

f
|
|
|
|
|
|
1
|
|
|

0 0.2 0.4 1 0.6 0.8 1

- -

P(malware)
M ©2021 Mandiant 27

Handling External APIs

The emulator needs to mock the API call
e The return value

* QOccasionally shuffling value into/out of memory registers

* Side effects
— Opening files
— Editing registry keys

There are more than 2,000 functions in kernel32.dll
alone

Unsurprisingly, a common anti-emulation technique is
to call an obscure API that an emulator is unlikely to
mock.

M ©2021 Mandiant

28

©2021 Mandiant

“We must think more carefully about the
assumptions and beliefs that we bring to a
problem.”

-NATE SILVER

29

Modifying the Emulator

Modifying the Emulator

Modifying things
for ML purposes
not reverse
engineering

M ©2021 Mandiant

Modifying the Emulator

e How accurate does the emulation need to be to

be useful for an ML model?

 We do not really need the program to run
“correctly”, we just need them “running”.

* If we faked the API, what would happen?
* The emulation would continue
At some point it’ll probably segfault

* Overall, we'll get more information but with
increased noise

M ©2021 Mandiant

def unknown api():

return 0

How we’re “supporting”
unknown APIs

31

Improvements on Speakeasy

APIs per file CDF

[
wu
o
o

0.8

0.6
1000

0.4

Probability

Count of samples

0.2

0 50 100 150 200 250 300 350 400 450
— Before
— After

APIs seen during emulation

Before

Model score distribution (best model)

0.4

Probabilify

After

Total APIs 6,958,540

19,213,248

Total memory allocations 1,868,206

M ©2021 Mandiant

3,445,727

0.8 1

32

Improvements on Speakeasy

APIs per file CDF

0.8

nples

0.6

0.4

Probability

Cc

0.2

0 50 100 150 200 250 300 350 400 450

APIs seen during emulation =~ — Before
— After

1500i
OL

0 0.2 0.4

Model score distribution (best model)

Probabilify

Before After

Total APIs 6,958,540

19,213,248

Total memory allocations 1,868,206

M ©2021 Mandiant

3,445,727

33

Results: Accuracy and Speed

Results

Accuracy and speed
results for
goodware/malware
and malware family
tasks

M ©2021 Mandiant

— 50,000

— 500,000
Goodware/Malware Task 000,000

Just on emulated files 1.05

: Median 0.95
Maximum instructions : emulation time
)]
© 09
50,000 0.96 0.9375 0
@ 0.85
500,000 1.40 0.9409 o
: : -
S
5,000,000 1.82 0.9457
: : 0.75
0.7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

False postive rate

Our classifier performs better on longer emulation runs. Note however that even at a fast setting you
M getting reasonable performance

©2021 Mandiant

— 50,000

— 500,000
Goodware/Malware Task 000,000

Just on emulated files 1.05

: Median 0.95
Maximum instructions :} emulation time

)]
C 0.9

50,000 g
@ 0.85

500,000 0.9409 o
£ o8

5,000,000 0.9457
0.75
0.7
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

False postive rate

Our classifier performs better on longer emulation runs. Note however that even at a fast setting you
M getting reasonable performance

©2021 Mandiant

— 50,000
Goodware/Malware Task — 500,000

All of EMBER 2018

— 5,000,000

0.98
: Median :
Maximum instructions : emulation time 0.97
Q
©
50,000 + Static 0.96 .9954 0 0.96
: 7
5 5 O
500,000 + Static 1.40 9953 o 0.95
5 5 - |
=
5,000,000 + Static 1.82 9951 004
Only Static features - .9951
: 0.93
0o 0.01 0.02 0.03 0.04

False postive rate

Static + Emulation gives you a slight performance increase over just static features. Longer emulation
M runs don’t necessarily improve things!

©2021 Mandiant 37

— 50,000
Goodware/Malware Task — 500,000

— 5,000,000
All of EMBER 2018
0.98
: Median :
Maximum instructions : emulation time 0.97
(O]
©
50,000 + Static 0 0.96
: o
500,000 + Static 1.40 o 0.95
: 3
=
5,000,000 + Static 1.82 004
Only Static features -
0.93
0 0.01 0.02 0.03 0.04

False postive rate

Static + Emulation gives you a slight performance increase over just static features. Longer emulation
M runs don’t necessarily improve things!

©2021 Mandiant 38

Where are the Improvements Coming From?

How are we getting lift from short emulation runs?

M

Errors from the 5 million instruction
emulation run

Packed was determined by Detect-
It-Easy

Most improvements are on
goodware

Specifically unpacked goodware

©2021 Mandiant

2500

2000

1500

1000

50

o

o

packed=True packed=False

fp fn fp fn

B Static+Emulation
B Static

39

Where are the Improvements Coming From?

How are we getting lift from short emulation runs?

M

Errors from the 5 million instruction
emulation run

Packed was determined by Detect-
It-Easy

Most improvements are on
goodware

Specifically unpacked goodware

©2(

2500

2000

1500

1000

50

o

o

packed=True packed=False

fp fn fp fn

40

Malware Family Prediction

Predictions
%,
w, Mos sp Prs)
_ ' C"fbef”?oz; ”%% "fs,,/;’s%s /:%,,,} ’%,C S S, ’5»@:%0,,7/ S/,,Zf@@f%O /ZS%. iy bop Y t"”/ocfovfer %bog
Maximum : Median : : M 0 76 O 1 0 0 O 0 122 0 0 O
. . emulation ACCuraCy Macro F1 kovter 4 1 0 0 0 0 0 0 19 0 "l 1004)
IS EULEIS time (s) : : ie®l o o o 0 0 0 0 o o o g o o
. el 0 0 O 0 1 0 o0 0 102 0 O
. : : : vl 23 8 0 13 4 0 0 15 0 10 0
50,000 + Static 0.96 : .93 : .87 : o prepscram NI . O - 3 o
§ § : § Ko SeSly M 0 0 0 0 0 0 o0 0 piEY] 130 0 o0
: : : —% downloadguide 0 0 0 0 0 0 (VI 2640 0] (0] (0]
: : : — SVl 0 0 0 o© 0 (2775) 0 o
500,000 + 1-40 -94 .88 ()] wapomi [l0] 0 0 3 0 0 0 0 0
Static : : : Ig fareit [P o B B 0 o 0 o
: : : i sality 0 0 1 1 0] 0 0 0
: : : : e 0 0 0 O 0 o 0 0
5,000,000 + 1.82 : 94 : .88 § M o o o0 1 0o 0 0 0
Static : : : : Eis 2 11 0 7 0 0o 1 3 108 0 o
: : : ; chapak [N) 0 0 286 201 14 0 o
§ § § § Ml 28 457 0 0 0 0 0 1624 1 0
Static : - : .92 : .86 E wannacry [SREEON 2044) o 0o o0 o0 15 0 0
5 5 5 5 emotet [IPIN4754 IIEE] o 0o 2 o0 77 4 2
cerber 1 (0] 14 0 0 1 0] 34 0 0

 Top 19 families (AVCLASS) in EMBER 2018
present in both train and test
e Slight improvements with emulation length

Test set predictions for the 50,000 + static model

M ©2021 Mandiant 41

Malware Family Prediction

Predictions
Obl'lx
w, Mos sp Prs)
_ ' C"fb@f”?oz; ”%% "fs,,/;’s%s /:%,,,} ’%,C S S, ’5»@:"00,,7/ S/,,Zf@@f%a /ZS%. iy bop Y t"”/o%"ovfer %bog
Maximum : Median : : M 0 76 O 1 0 0 O 0 122 0 0 O
. . emulation ACCuraCy Macro F1 kovter 4 1 0 0 0 0 0 0 19 0 "l 1004)
IS EULEIS time (s) : : ie®l o o o 0 0 0 0 o o o g o o
. el 0 0 O 0 1 0 o0 0 102 0 O
. : : 5 vl 23 8 0 13 4 0 0 15 0 10 0
50,000 + Static 0.96 : .93 : .87 : o prepscram NI . O - 3 o
§ § : § Ko SeSly M 0 0 0 0 0 0 o0 0 piEY] 130 0 o0
: : : —8 downloadguide 0 0 0 0 0 0 (VI 2640 0] (0] (0]
: : : — SVl 0 0 0 o© 0 (2775) 0 o
500,000 + 1-40 -94 .88 ()] wapomi [l0] 0 0 3 0 0 0 0 0
Static : : : Ig fareit [P o B B 0 o 0 o
: : : i sality 0 0 1 1 0] 0 0 0
: : : : e 0 0 0 O 0 o 0 0
5,000,000 + 1.82 : 94 : .88 § M o o o0 1 0o 0 0 0
Static : : : : Eis 2 11 0 7 0 0o 1 3 108 0 o0
: : : ; chapak [N) 0 0 286 201 14 0 o
§ § § § Ml 28 457 0 0 0 0 0 1624 1 0
Static : - : .92 : .86 E wannacry [SREEON 2044) o 0o o0 o0 15 0 0
5 5 5 5 emotet [FIN4754 IOIEE] 0o 0 2 0 77 4 2
cerber 1 (0] 14 (0] 0 1 (0] 34 (0] (0]

 Top 19 families (AVCLASS) in EMBER 2018
present in both train and test
e Slight improvements with emulation length

Test set predictions for the 50,000 + static model

M ©2021 Mandiant 42

CO“C'USion Model score distribution (initial) O/d

More emulation data is better than high-fidelity
emulation data

* Clear benefits for even simple approaches to | | ‘ II
mocking API calls . :

Count of samples

Emulation features provide clear lift over static- Probability
only features /
’hp,ol/
* Both goodware/malware and family classification Model score distribution (best model) ~“@gy

tasks improve

Surprisingly even short emulation runs help

Count of samples

* Provides additional, high-quality goodware signal

30k
20k
10k]
1 1
00 0.2 - 3 O-B 1

Probability

M ©2021 Mandiant

43

(tANDIANT

YYYYYYYYYYYYYYYYYYYYYYYYYY

Thank You.

(ANDIANT

YOUR CYBERSECURITY ADVANTAGE

