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Malware Analysis
• Static: Does this look like malware?

• Not running program

• Look for static features like strings, DLLs, etc.

• May encounter difficulty on obfuscation or packing

• Fast enough to block malware execution

• Dynamic: Does this behave like malware?

• Runs the program in specific environment

• Record events logs during execution

• More effective against obfuscation and packing

• Not fast enough to block malware execution



©2021 Mandiant 5

Malware Analysis
• Static: Does this look like malware?

• Not running program

• Look for static features like strings, DLLs, etc.

• May encounter difficulty on obfuscation or packing

• Fast enough to block malware execution

• Dynamic: Does this behave like malware?

• Runs the program in specific environment

• Record events logs during execution

• More effective against obfuscation and packing

• Not fast enough to block malware execution
Emulation

Sandbox
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Dynamic Analysis

• Runs a full OS
• OS implements the system calls
• Heavy weight – need a system image 

• Mocks execution – no OS
• Implement or fake system calls itself
• Lighter weight

Sandbox EmulatorWindows!

Just the 
program
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Windows PE in particular
Machine Learning + Emulation?

• There are numerous emulators available
• Pre-existing work on ML classifiers based on 

emulation
• A lot on Android
• Microsoft has published work on PE emulation + ML
• We’re assuming a bunch of AV companies have 

something similar

https://www.unicorn-engine.org/showcase/
R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2019-Octob, pp. 571–578, 2019.

B. Amos, H. Turner, and J. White,  2013 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666–1671, 2013.

Example emulation packages using the 
unicorn CPU emulator

https://www.unicorn-engine.org/showcase/
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Example emulation packages using the 
unicorn CPU emulator

How easy is this to accomplish nowadays? 
(Especially if you don’t have a team maintaining your emulator)

What does the emulation accuracy / compute speed / 
model accuracy tradeoff(s) look like? 

• There are numerous emulators available
• Pre-existing work on ML classifiers based on 

emulation
• A lot on Android
• Microsoft has published work on PE emulation + ML
• We’re assuming a bunch of AV companies have 

something similar

https://www.unicorn-engine.org/showcase/
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Speakeasy

• A lightweight emulator aiming for 
acquiring the triage reports in 
automated way

• Open-Source package from Mandiant

• Designed for Windows malware

• Configurable environments

• Can add various limitations for partial 
running
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for ML purposes 
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results for 
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Emulation Pipeline
Experimental Setup (1)

EMBER 
2018

Python 
process

Speakeasy Proc 1

Parallel Speakeasy Process

Speakeasy Proc 2

Speakeasy Proc n

...
Emulation 

Reports

Controlled emulation process, limits on:
• Execution time
• RAM
• Total # of instructions 
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What Do We Get From Emulation?

Sequence of external APIs called

Memory access statistics

I n s t r u c t i o n  c o u nte r N a m e Re t u r n e d A rg u m e nt s

0x401688 advapi32.CryptCreateHash 0x1 "0x680", "CALG_MD5", 
"0x0", …

0x4016a8 advapi32.CryptHashData 0x1 "0x2804","0x50000", …

0x401724 user32.wsprintfA 0x2 "00", "%02X"

N a m e Re a d Wr i te E xe c u te

Loaded binary file 61129 33587 492185

Program stack 106541 62419 0
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Is This Useful for Classification?

Name of allocated memory block

Pe
rc

en
t m

al
w

ar
e
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Name of allocated memory block

ole32 - 95.8%
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Is This Useful for Classification?

Name of allocated memory block

Pe
rc

en
t m

al
w

ar
e

ole32 - 95.8%

Why load a DLL into memory?

To find/use a function,
without listing it in the import 

table
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Feature Engineering
APIs hash trick

bag of words

n-grams?

Memory 
section 
names

hash trick

bag of words

Memory 
access

read/write/execute counts as integers

𝑋 ℎ 𝑛𝑎𝑚𝑒 + ” − 𝑟𝑒𝑎𝑑” += 𝑟𝑒𝑎𝑑𝑠
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Feature Engineering
APIs hash trick

bag of words

n-grams?

Memory 
section 
names

hash trick

bag of words

Memory 
access

read/write/execute counts as integers

𝑋 ℎ 𝑛𝑎𝑚𝑒 + ” − 𝑟𝑒𝑎𝑑” += 𝑟𝑒𝑎𝑑𝑠

For this talk we’re sticking to 
bag of individual words

Provides potentially 
interesting evidence of 
unpacking (write + execute)
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How we’re modeling
Experimental Setup (2)

Just the files that emulated All of EMBER

• Using only emulation 
features

• Makes measuring changes 
to the emulator easy

• Ignores a bunch of files 
(.NET)

• Using static and  
emulation features

• More production realistic

• Missing emulation 
features are encoded as -1

We’ll look primarily at goodware/malware classification,
but we also experiment with malware family classification

Emulation 
features

Static 
features

No emulation
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A Note on Model Choice

LightGBM Neural Network

API features

Memory 
features

We explored both LightGBM (gradient boosted trees) and various neural network architectures. We got the best 
performance from LightGBM, but our search was hardly exhaustive.
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Modeling – Errors

𝑃 𝑚𝑎𝑙𝑤𝑎𝑟𝑒

Co
un

t
Model results on EMBER

Malware
Goodware
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Modeling – Errors

𝑃 𝑚𝑎𝑙𝑤𝑎𝑟𝑒

Co
un

t

Correct classifications

Model results on EMBER

Malware
Goodware
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Modeling – Errors

𝑃 𝑚𝑎𝑙𝑤𝑎𝑟𝑒

Co
un

t

Incorrect classifications

Model results on EMBER

Malware
Goodware
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Modeling – Errors

𝑃 𝑚𝑎𝑙𝑤𝑎𝑟𝑒

Co
un

t

“Unsure” classifications
These are emulations that have 0 API calls

The first API call wasn’t supported

Model results on EMBER

Malware
Goodware
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Handling External APIs

The emulator needs to mock the API call
• The return value
• Occasionally shuffling value into/out of memory registers
• Side effects

– Opening files
– Editing registry keys

There are more than 2,000 functions in kernel32.dll 
alone

Unsurprisingly, a common anti-emulation technique is 
to call an obscure API that an emulator is unlikely to 
mock.
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“We must think more carefully about the 
assumptions and beliefs that we bring to a 
problem.”
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Emulation Intro Experiment Design First Attempt Modifying the Emulator Results

Modifying the Emulator

Background and 
questions we’ll 
answer today

Emulation features 
and data sets

Things don’t quite 
go as planned

Modifying things 
for ML purposes 
not reverse 
engineering

Accuracy and speed 
results for 
goodware/malware 
and malware family 
tasks
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• How accurate does the emulation need to be to 
be useful for an ML model?
• We do not really need the program to run 

“correctly”, we just need them “running”.

• If we faked the API, what would happen? 
• The emulation would continue
• At some point it’ll probably segfault
• Overall, we’ll get more information but with 

increased noise

Modifying the Emulator

def unknown_api():
return 0

How we’re “supporting” 
unknown APIs
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Improvements on Speakeasy

Co
un

t o
f s

am
pl

es

Probability

Model score distribution (best model)

APIs seen during emulation

Pr
ob

ab
ili

ty

APIs per file CDF

Before After

Total APIs 6,958,540 19,213,248

Total memory allocations 1,868,206 3,445,727
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Model score distribution (best model)
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APIs per file CDF

Before After

Total APIs 6,958,540 19,213,248

Total memory allocations 1,868,206 3,445,727

Getting more data is preferable to matching the real execution behavior
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Results: Accuracy and Speed

Background and 
questions we’ll 
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Just on emulated files
Goodware/Malware Task

M a x i m u m  i n s t r u c t i o n s
M e d i a n  

e m u l a t i o n  t i m e  
( s )

A U R O C

50,000 0.96 0.9375

500,000 1.40 0.9409

5,000,000 1.82 0.9457

50,000
500,000
5,000,000

Our classifier performs better on longer emulation runs. Note however that even at a fast setting you 
getting reasonable performance
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Just on emulated files
Goodware/Malware Task

M a x i m u m  i n s t r u c t i o n s
M e d i a n  

e m u l a t i o n  t i m e  
( s )

A U R O C

50,000 0.96 0.9375

500,000 1.40 0.9409

5,000,000 1.82 0.9457

50,000
500,000
5,000,000

Our classifier performs better on longer emulation runs. Note however that even at a fast setting you 
getting reasonable performance

We can get reasonable 
performance with <1s 

emulation time.
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All of EMBER 2018
Goodware/Malware Task

M a x i m u m  i n s t r u c t i o n s
M e d i a n  

e m u l a t i o n  t i m e  
( s )

A U R O C

50,000 + Static 0.96 .9954

500,000 + Static 1.40 .9953

5,000,000 + Static 1.82 .9951

Only Static features - .9951

50,000
500,000
5,000,000

Static + Emulation gives you a slight performance increase over just static features. Longer emulation 
runs don’t necessarily improve things!
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All of EMBER 2018
Goodware/Malware Task

M a x i m u m  i n s t r u c t i o n s
M e d i a n  

e m u l a t i o n  t i m e  
( s )

A U R O C

50,000 + Static 0.96 .9954

500,000 + Static 1.40 .9953

5,000,000 + Static 1.82 .9951

Only Static features - .9951

50,000
500,000
5,000,000

Static + Emulation gives you a slight performance increase over just static features. Longer emulation 
runs don’t necessarily improve things!

AUROC does not improve
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How are we getting lift from short emulation runs?
Where are the Improvements Coming From?

• Errors from the 5 million instruction 
emulation run

• Packed was determined by Detect-
It-Easy

• Most improvements are on 
goodware 
• Specifically unpacked goodware
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How are we getting lift from short emulation runs?
Where are the Improvements Coming From?

• Errors from the 5 million instruction 
emulation run

• Packed was determined by Detect-
It-Easy

• Most improvements are on 
goodware 
• Specifically unpacked goodware

Short emulation runs provide additional goodware signal in combination 
with static features
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Malware Family Prediction

M a x i m u m  
i n s t r u c t i o n s

M e d i a n  
e m u l a t i o n  

t i m e  ( s )
A c c u ra c y M a c ro  F 1

50,000 + Static 0.96 .93 .87

500,000 + 
Static

1.40 .94 .88

5,000,000 + 
Static

1.82 .94 .88

Static - .92 .86

• Top 19 families (AVCLASS) in EMBER 2018 
present in both train and test

• Slight improvements with emulation length

Test set predictions for the 50,000 + static model

Predictions

Tr
ue

 la
be

ls
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Malware Family Prediction

M a x i m u m  
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• Top 19 families (AVCLASS) in EMBER 2018 
present in both train and test

• Slight improvements with emulation length

Test set predictions for the 50,000 + static model

Predictions

Tr
ue

 la
be

ls
Confusion Matrix is not 

Symmetric
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Conclusion

Improved

• More emulation data is better than high-fidelity 
emulation data

• Clear benefits for even simple approaches to 
mocking API calls

• Emulation features provide clear lift over static-
only features

• Both goodware/malware and family classification 
tasks improve

• Surprisingly even short emulation runs help

• Provides additional, high-quality goodware signal

Model score distribution (initial)

Co
un

t o
f s

am
pl

es

Probability

Co
un

t o
f s

am
pl

es

Probability

Model score distribution (best model)

Old



Thank You.




