
Lightweight, Emulation-Assisted
Malware Classification

Xigao Li, David Krisiloff, Scott Coull

©2021 Mandiant 2

Who We Are

Graduate student at Stony Brook
University

Mandiant Data Science Intern 2021

Manager, Data Science at
Mandiant

Director, Data Science Research at
Mandiant

©2021 Mandiant 3

Outline

Emulation Intro Experiment Design First Attempt Modifying the Emulator Results

Background and
questions we’ll
answer today

Emulation features
and data sets

Things don’t go
quite as planned

Modifying things
for ML purposes,
not reverse
engineering

Accuracy and speed
results for
goodware/malware
and malware family
tasks

©2021 Mandiant 4

Malware Analysis
• Static: Does this look like malware?

• Not running program

• Look for static features like strings, DLLs, etc.

• May encounter difficulty on obfuscation or packing

• Fast enough to block malware execution

• Dynamic: Does this behave like malware?

• Runs the program in specific environment

• Record events logs during execution

• More effective against obfuscation and packing

• Not fast enough to block malware execution

©2021 Mandiant 5

Malware Analysis
• Static: Does this look like malware?

• Not running program

• Look for static features like strings, DLLs, etc.

• May encounter difficulty on obfuscation or packing

• Fast enough to block malware execution

• Dynamic: Does this behave like malware?

• Runs the program in specific environment

• Record events logs during execution

• More effective against obfuscation and packing

• Not fast enough to block malware execution
Emulation

Sandbox

©2021 Mandiant 6

Dynamic Analysis

• Runs a full OS
• OS implements the system calls
• Heavy weight – need a system image

• Mocks execution – no OS
• Implement or fake system calls itself
• Lighter weight

Sandbox EmulatorWindows!

Just the
program

©2021 Mandiant 7

Windows PE in particular
Machine Learning + Emulation?

• There are numerous emulators available
• Pre-existing work on ML classifiers based on

emulation
• A lot on Android
• Microsoft has published work on PE emulation + ML
• We’re assuming a bunch of AV companies have

something similar

https://www.unicorn-engine.org/showcase/
R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2019-Octob, pp. 571–578, 2019.

B. Amos, H. Turner, and J. White, 2013 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666–1671, 2013.

Example emulation packages using the
unicorn CPU emulator

https://www.unicorn-engine.org/showcase/

©2021 Mandiant 8

Windows PE in particular
Machine Learning + Emulation?

https://www.unicorn-engine.org/showcase/
R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2019-Octob, pp. 571–578, 2019.

B. Amos, H. Turner, and J. White, 2013 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666–1671, 2013.

Example emulation packages using the
unicorn CPU emulator

How easy is this to accomplish nowadays?
(Especially if you don’t have a team maintaining your emulator)

• There are numerous emulators available
• Pre-existing work on ML classifiers based on

emulation
• A lot on Android
• Microsoft has published work on PE emulation + ML
• We’re assuming a bunch of AV companies have

something similar

https://www.unicorn-engine.org/showcase/

©2021 Mandiant 9

Windows PE in particular
Machine Learning + Emulation?

https://www.unicorn-engine.org/showcase/
R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj, Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2019-Octob, pp. 571–578, 2019.

B. Amos, H. Turner, and J. White, 2013 9th Int. Wirel. Commun. Mob. Comput. Conf. IWCMC 2013, pp. 1666–1671, 2013.

Example emulation packages using the
unicorn CPU emulator

How easy is this to accomplish nowadays?
(Especially if you don’t have a team maintaining your emulator)

What does the emulation accuracy / compute speed /
model accuracy tradeoff(s) look like?

• There are numerous emulators available
• Pre-existing work on ML classifiers based on

emulation
• A lot on Android
• Microsoft has published work on PE emulation + ML
• We’re assuming a bunch of AV companies have

something similar

https://www.unicorn-engine.org/showcase/

©2021 Mandiant 10

Speakeasy

• A lightweight emulator aiming for
acquiring the triage reports in
automated way

• Open-Source package from Mandiant

• Designed for Windows malware

• Configurable environments

• Can add various limitations for partial
running

©2021 Mandiant 11

Emulation Intro Experiment Design First Attempt Modifying the Emulator Results

Experiment Design

Background and
questions we’ll
answer today

Emulation features
and data sets

Things don’t quite
go as planned

Modifying things
for ML purposes
not reverse
engineering

Accuracy and speed
results for
goodware/malware
and malware family
tasks

©2021 Mandiant 13

Emulation Pipeline
Experimental Setup (1)

EMBER
2018

Python
process

Speakeasy Proc 1

Parallel Speakeasy Process

Speakeasy Proc 2

Speakeasy Proc n

...
Emulation

Reports

Controlled emulation process, limits on:
• Execution time
• RAM
• Total # of instructions

©2021 Mandiant 14

What Do We Get From Emulation?

Sequence of external APIs called

Memory access statistics

I n s t r u c t i o n c o u nte r N a m e Re t u r n e d A rg u m e nt s

0x401688 advapi32.CryptCreateHash 0x1 "0x680", "CALG_MD5",
"0x0", …

0x4016a8 advapi32.CryptHashData 0x1 "0x2804","0x50000", …

0x401724 user32.wsprintfA 0x2 "00", "%02X"

N a m e Re a d Wr i te E xe c u te

Loaded binary file 61129 33587 492185

Program stack 106541 62419 0

©2021 Mandiant 15

Is This Useful for Classification?

Name of allocated memory block

Pe
rc

en
t m

al
w

ar
e

©2021 Mandiant 16

Is This Useful for Classification?
Pe

rc
en

t m
al

w
ar

e

Name of allocated memory block

ole32 - 95.8%

©2021 Mandiant 17

Is This Useful for Classification?

Name of allocated memory block

Pe
rc

en
t m

al
w

ar
e

ole32 - 95.8%

Why load a DLL into memory?

To find/use a function,
without listing it in the import

table

©2021 Mandiant 18

Feature Engineering
APIs hash trick

bag of words

n-grams?

Memory
section
names

hash trick

bag of words

Memory
access

read/write/execute counts as integers

𝑋 ℎ 𝑛𝑎𝑚𝑒 + ” − 𝑟𝑒𝑎𝑑” += 𝑟𝑒𝑎𝑑𝑠

©2021 Mandiant 19

Feature Engineering
APIs hash trick

bag of words

n-grams?

Memory
section
names

hash trick

bag of words

Memory
access

read/write/execute counts as integers

𝑋 ℎ 𝑛𝑎𝑚𝑒 + ” − 𝑟𝑒𝑎𝑑” += 𝑟𝑒𝑎𝑑𝑠

For this talk we’re sticking to
bag of individual words

©2021 Mandiant 20

Feature Engineering
APIs hash trick

bag of words

n-grams?

Memory
section
names

hash trick

bag of words

Memory
access

read/write/execute counts as integers

𝑋 ℎ 𝑛𝑎𝑚𝑒 + ” − 𝑟𝑒𝑎𝑑” += 𝑟𝑒𝑎𝑑𝑠

For this talk we’re sticking to
bag of individual words

Provides potentially
interesting evidence of
unpacking (write + execute)

©2021 Mandiant 21

How we’re modeling
Experimental Setup (2)

Just the files that emulated All of EMBER

• Using only emulation
features

• Makes measuring changes
to the emulator easy

• Ignores a bunch of files
(.NET)

• Using static and
emulation features

• More production realistic

• Missing emulation
features are encoded as -1

We’ll look primarily at goodware/malware classification,
but we also experiment with malware family classification

Emulation
features

Static
features

No emulation

©2021 Mandiant 22

A Note on Model Choice

LightGBM Neural Network

API features

Memory
features

We explored both LightGBM (gradient boosted trees) and various neural network architectures. We got the best
performance from LightGBM, but our search was hardly exhaustive.

©2021 Mandiant 23

Emulation Intro Experiment Design First Attempt Modifying the Emulator Results

First Attempt

Background and
questions we’ll
answer today

Emulation features
and data sets

Things don’t quite
go as planned

Modifying things
for ML purposes
not reverse
engineering

Accuracy and speed
results for
goodware/malware
and malware family
tasks

©2021 Mandiant 24

Modeling – Errors

𝑃 𝑚𝑎𝑙𝑤𝑎𝑟𝑒

Co
un

t
Model results on EMBER

Malware
Goodware

©2021 Mandiant 25

Modeling – Errors

𝑃 𝑚𝑎𝑙𝑤𝑎𝑟𝑒

Co
un

t

Correct classifications

Model results on EMBER

Malware
Goodware

©2021 Mandiant 26

Modeling – Errors

𝑃 𝑚𝑎𝑙𝑤𝑎𝑟𝑒

Co
un

t

Incorrect classifications

Model results on EMBER

Malware
Goodware

©2021 Mandiant 27

Modeling – Errors

𝑃 𝑚𝑎𝑙𝑤𝑎𝑟𝑒

Co
un

t

“Unsure” classifications
These are emulations that have 0 API calls

The first API call wasn’t supported

Model results on EMBER

Malware
Goodware

©2021 Mandiant 28

Handling External APIs

The emulator needs to mock the API call
• The return value
• Occasionally shuffling value into/out of memory registers
• Side effects

– Opening files
– Editing registry keys

There are more than 2,000 functions in kernel32.dll
alone

Unsurprisingly, a common anti-emulation technique is
to call an obscure API that an emulator is unlikely to
mock.

©2021 Mandiant 29

“We must think more carefully about the
assumptions and beliefs that we bring to a
problem.”

©2021 Mandiant 30

Emulation Intro Experiment Design First Attempt Modifying the Emulator Results

Modifying the Emulator

Background and
questions we’ll
answer today

Emulation features
and data sets

Things don’t quite
go as planned

Modifying things
for ML purposes
not reverse
engineering

Accuracy and speed
results for
goodware/malware
and malware family
tasks

©2021 Mandiant 31

• How accurate does the emulation need to be to
be useful for an ML model?
• We do not really need the program to run

“correctly”, we just need them “running”.

• If we faked the API, what would happen?
• The emulation would continue
• At some point it’ll probably segfault
• Overall, we’ll get more information but with

increased noise

Modifying the Emulator

def unknown_api():
return 0

How we’re “supporting”
unknown APIs

©2021 Mandiant 32

Improvements on Speakeasy

Co
un

t o
f s

am
pl

es

Probability

Model score distribution (best model)

APIs seen during emulation

Pr
ob

ab
ili

ty

APIs per file CDF

Before After

Total APIs 6,958,540 19,213,248

Total memory allocations 1,868,206 3,445,727

©2021 Mandiant 33

Improvements on Speakeasy

Co
un

t o
f s

am
pl

es

Probability

Model score distribution (best model)

APIs seen during emulation

Pr
ob

ab
ili

ty

APIs per file CDF

Before After

Total APIs 6,958,540 19,213,248

Total memory allocations 1,868,206 3,445,727

Getting more data is preferable to matching the real execution behavior

©2021 Mandiant 34

Emulation Intro Experiment Design First Attempt Modifying the Emulator Results

Results: Accuracy and Speed

Background and
questions we’ll
answer today

Emulation features
and data sets

Things don’t quite
go as planned

Modifying things
for ML purposes
not reverse
engineering

Accuracy and speed
results for
goodware/malware
and malware family
tasks

©2021 Mandiant 35

Just on emulated files
Goodware/Malware Task

M a x i m u m i n s t r u c t i o n s
M e d i a n

e m u l a t i o n t i m e
(s)

A U R O C

50,000 0.96 0.9375

500,000 1.40 0.9409

5,000,000 1.82 0.9457

50,000
500,000
5,000,000

Our classifier performs better on longer emulation runs. Note however that even at a fast setting you
getting reasonable performance

©2021 Mandiant 36

Just on emulated files
Goodware/Malware Task

M a x i m u m i n s t r u c t i o n s
M e d i a n

e m u l a t i o n t i m e
(s)

A U R O C

50,000 0.96 0.9375

500,000 1.40 0.9409

5,000,000 1.82 0.9457

50,000
500,000
5,000,000

Our classifier performs better on longer emulation runs. Note however that even at a fast setting you
getting reasonable performance

We can get reasonable
performance with <1s

emulation time.

©2021 Mandiant 37

All of EMBER 2018
Goodware/Malware Task

M a x i m u m i n s t r u c t i o n s
M e d i a n

e m u l a t i o n t i m e
(s)

A U R O C

50,000 + Static 0.96 .9954

500,000 + Static 1.40 .9953

5,000,000 + Static 1.82 .9951

Only Static features - .9951

50,000
500,000
5,000,000

Static + Emulation gives you a slight performance increase over just static features. Longer emulation
runs don’t necessarily improve things!

©2021 Mandiant 38

All of EMBER 2018
Goodware/Malware Task

M a x i m u m i n s t r u c t i o n s
M e d i a n

e m u l a t i o n t i m e
(s)

A U R O C

50,000 + Static 0.96 .9954

500,000 + Static 1.40 .9953

5,000,000 + Static 1.82 .9951

Only Static features - .9951

50,000
500,000
5,000,000

Static + Emulation gives you a slight performance increase over just static features. Longer emulation
runs don’t necessarily improve things!

AUROC does not improve

©2021 Mandiant 39

How are we getting lift from short emulation runs?
Where are the Improvements Coming From?

• Errors from the 5 million instruction
emulation run

• Packed was determined by Detect-
It-Easy

• Most improvements are on
goodware
• Specifically unpacked goodware

©2021 Mandiant 40

How are we getting lift from short emulation runs?
Where are the Improvements Coming From?

• Errors from the 5 million instruction
emulation run

• Packed was determined by Detect-
It-Easy

• Most improvements are on
goodware
• Specifically unpacked goodware

Short emulation runs provide additional goodware signal in combination
with static features

©2021 Mandiant 41

Malware Family Prediction

M a x i m u m
i n s t r u c t i o n s

M e d i a n
e m u l a t i o n

t i m e (s)
A c c u ra c y M a c ro F 1

50,000 + Static 0.96 .93 .87

500,000 +
Static

1.40 .94 .88

5,000,000 +
Static

1.82 .94 .88

Static - .92 .86

• Top 19 families (AVCLASS) in EMBER 2018
present in both train and test

• Slight improvements with emulation length

Test set predictions for the 50,000 + static model

Predictions

Tr
ue

 la
be

ls

©2021 Mandiant 42

Malware Family Prediction

M a x i m u m
i n s t r u c t i o n s

M e d i a n
e m u l a t i o n

t i m e (s)
A c c u ra c y M a c ro F 1

50,000 + Static 0.96 .93 .87

500,000 +
Static

1.40 .94 .88

5,000,000 +
Static

1.82 .94 .88

Static - .92 .86

• Top 19 families (AVCLASS) in EMBER 2018
present in both train and test

• Slight improvements with emulation length

Test set predictions for the 50,000 + static model

Predictions

Tr
ue

 la
be

ls
Confusion Matrix is not

Symmetric

©2021 Mandiant 43

Conclusion

Improved

• More emulation data is better than high-fidelity
emulation data

• Clear benefits for even simple approaches to
mocking API calls

• Emulation features provide clear lift over static-
only features

• Both goodware/malware and family classification
tasks improve

• Surprisingly even short emulation runs help

• Provides additional, high-quality goodware signal

Model score distribution (initial)

Co
un

t o
f s

am
pl

es

Probability

Co
un

t o
f s

am
pl

es

Probability

Model score distribution (best model)

Old

Thank You.

