

Heated Alert Triage (HeAT) – Network Agnostic Extraction of Cyber Attack Campaigns

Stephen Moskal and Shanchieh Jay Yang

Ph.D. Candidate MS in Computer Engineering Rochester Institute of Technology

- Motivation: Cyber attack behaviors extremely diverse and complex
 - The actions performed by the adversary is dependent on the network infrastructure <u>and</u> the skill set of the adversary.
 - Hypothesis: the same "attack" on different networks may have similar characteristics but conducted differently due to the network infrastructure.
- Ideally: Use a labelled dataset describing the attack stages for various attackers, scenarios, and networks. Train a model
 - <u>Does not exist</u> -- attacks are constantly evolving
 - IDS's are inaccurate and produce overwhelming amounts of data time is limited for analysts

Instead: Use a limited amount of labelled data and leverage unsupervised/semi-supervised ML techniques along with feature engineering to extract attack scenario charateristics

How do we extract out the "kill chain" given the IDS alert logs? We ask: If adversarial activity is known to have occurred on a network, can we:

1) *leverage the IDS alert logs to extract out the relevant alerts pertaining to the adversarial actions,* and

2) describe the attack campaign as a set of concise and intuitive "stages" so that campaigns can be compared

Remember: SOC analyst's time and resources are extremely limited <- Our solution should not be a burden either!

PATRL – Semi-supervised process to determine the **attack stage** (kill-chain like) of *any* IDS alert signature (Deep-NLP)

HeAT – Use prior network triage's to create a network-agnostic model to uncover other attack campaigns

Heated Alert Triage (HeAT) – Network Agnostic Extraction of Cyber

Attack Campaigns

- <u>Problem</u>: Trace the steps/stages an attacker took to compromise a network (attk. campaign (AC)) given some critical IoC (Indicator of Compromise)
 - SOC analysts triage IDS logs for other evidence (e.g. recon scans, asset exploitation) to determine if an IoC is a legitimate threat

Can we capture this assessment to explain other campaigns?

- Analysts have their own knowledge of the network, prior observations, and cyber-expertise!
- <u>Approach</u>:
 - Alert Episode Heat Ranks (0-3) how an `episode` of alerts contributes to the AC of a critical IoC – Attackstage based
 - Network-Agnostic Features- Determine AC characteristics with no specific network info – Apply HeAT to other adversaries and networks!
 - HeATed Attack Campaign- Concise representation of the attack stages conducted by the attacker in time – Respond to threats quickly

Dealing With High Volume of IDS Alerts – "<u>Alert Episodes</u>"

- **Problem**: IDS's produce an overwhelming amount of alerts per-day (~10k-1M)
 - Often many false positives or one 'action' causing many alerts (recon, scripting, etc.)
 - Objective: Consolidate similar alerts based on the attack type, IP addresses, and time

Core HeAT Concepts

Alert Episode Heat (AEH)

 Given an IoC, AEH represents the contribution of a prior event to the IoC's attack campaign

AEH	Description
0	No relation to critical event
1	Recon. actions that may provide info. about e_c
2	Exploitation of assets giving access required to achieve e_c
3	Exfiltration/DoS/Access to info. directly relevant to e_c

Higher heat = Significant progress towards IoC

- 1. Perform a short triage using IoC's found on the network
- 2. Apply AEH values to prior events <u>w.r.t the IoC</u>
- **3.** Use <u>network-agnostic features</u> train a model so that other scenarios can be realized given other IoC's

Network Agnostic Features

• Engineered features of the relation between two episodes with no specific network info

Name Symbol				Des	scription	
	Ep. Peak e_{peak} T			ime of pe	ak alert volume	
	Ep. Start	<i>e</i> _{start}	T	ime of ea	rliest alert	
	Ep. End	e _{end}	T	ime of lat	est alert	
	Distinct Source(s)	e _{src}	S	Туре	Feature	Description
	Distinct Target(s) e_t Distinct Sig(s) e_s Distinct Dest. Port(s) e_p	e _{tgt}	S	4	En Internal Orienlan	Overlap between the start &
		e _{sig}	S		Ep. Interval Overlap	end times of e_c and e_p
		eport	Se Time	Ep. Peak Time Diff.	$e_{c,peak} - e_{p,peak}$	
	AIS	e _{ais}	А	А	Ep. Start Time Diff.	$e_{c,start} - e_{p,start}$
					Ep End Time Diff.	$e_{c,end} - e_{p,end}$
Attributes such as IP.					Has Matching Source	1 if $e_{c,src} \cap e_{p,src}$ else 0
),		Has Matching Target	1 if $e_{c,tgt} \cap e_{p,tgt}$ else 0
			1	TD	Matching Source Ratio	Ratio of matching source IPs
timestamp, etc. are specific to a single network				11	Matching Target Ratio	Ratio of matching target IPs
					Crit. Source as Target	1 if $e_{c,src} \cap e_{p,tgt}$ else 0
					Crit. Target as Source	1 if $e_{c,tgt} \cap e_{p,src}$ else 0
					Critical Ep. AIS	1-hot encoded $e_{c,AIS}$
					Prior Ep. AIS	1-hot encoded $e_{p,AIS}$
			Action	Has Matching Sigs.	1 if $e_{c,sig} \cap e_{p,sig}$ else 0	
				Matched Sig. Ratio	Ratio of matching signatures	
				Matching Dest. Port	1 if $e_{c,port} \cap e_{p,port}$ else 0	

These features enable us to **characterize** the indicators of an attack and use them to **uncover other scenarios**

HeATed Attack Campaign Examples – "CodeRed"

HeATing Different Adversaries (CPTC18)

"Calculated" Approach

HeATing Different Networks (CCDC18 w/ CPTC observations)

Our network-agnostic features allow HeAT to find similarities between strategies regardless of adversary or network

Thanks for listening!

Stephen Moskal <u>sfm5015@rit.edu</u> Linked-in: <u>https://www.linkedin.com/in/stephen-moskal/</u> Music: <u>https://www.mixcloud.com/shadw_moses/</u>

HeATed Attack Campaign Part Two – HeAT Entropy Gain

HAC: HeATed Attack Campaigns

Our network-agnostic features allowed HeAT to find similarities between strategies regardless of adversary or network

We needed a metric to aid the user in finding HAC's describing a diverse set of attack types and sufficiently capture the domain knowledge defined by the analyst

Optimal domain knowledge captured

H h' x

Hdx

1.0

₫ 0.8 Vali

0.6

0.4 0.2 0.0

0.0

PATRL: (*Pseudo Active TRansfer Learning*) to interpret cryptic alerts

"<u>ET EXPLOIT Possible CVE-2014-3704 Drupal SQLi</u> attempt URLENCODE1"

What type of attack is this describing??

Approaches – Transfer Learning (ULMFiT), Monte Carlo Dropout Uncertainty (MCDU), Pseudo-Active Transfer Learning

Transfer LM w/ Text Source(s)	Top 1 Acc.	Top 3 Acc.
Multinomial Naive Bayes (No LM)	.5452	.8025
LM: Wikipedia (Default)	.3535	.61
LM: Wiki + IMDB	.4357	.75
LM: Wiki + MITRE ATT&CK	.5928	.8786
LM: Wiki + CPTC/CCDC Suricata	.6462	.9048
LM: Wiki + All Suricata (64k)	.6871	.85
LM: Wiki + CVE Database	.6975	.8929
LM: Wiki + All Cyber-relevant Texts	8024	.9084
LM: Wiki + All Cyber + 1k Random PL(s	.8292	.98

~1000 labeled signatures to classify 64k!

Heated Alert Triage (HeAT): Network Agnostic Extraction of Cyber Attack Campaigns

Approaches – Alert Episode Heat (captures the impact of initial triage), Network-Agnostic Features, HeATed Attack Campaign (w/ alert aggregation)

Our network-agnostic features allow HeAT to find similarities between strategies regardless of adversary or network

PATRL (Pseudo Active TRansfer Learning) to interpret cryptic alerts

- Problem: how to translate cryptic alerts with limited expertise and time?
 - SOC analysts may be only familiar with a small portion (~1%) of alerts use AI/ML to help.
 - e.g., "ET EXPLOIT Possible CVE-2014-3704 Drupal SQLi attempt URLENCODE1"
 - Web-Attack, Code-Exe or Priv-Esc? Only 2.5% Suricata has CVE numbers to search for.
- No existing works other than using SIEM & online info to manually find the meaning of unknown alerts.
- <u>Approach</u>:
 - Use Transfer Learning to learn the cyber "language" and train an initial predictor w/ ~1% labeled data.
 - Use Monte-Carlo Dropout Uncertainty (MCDU) to measure the uncertainty of prediction.
 - Use Pseudo-Labeled (predicted) data based on MCDU to refine the prediction model.
 - Use MCDU to provide confidence in predicted labels.

- **Problem**: IDS's produce an overwhelming amount of alerts per-day (~10k-1M)
 - Often many false positives or one 'action' causing many alerts (recon, scripting, etc.)
 - Objective: Consolidate similar alerts based on the attack type, IP addresses, and time

Method: Apply Gaussian Smoothing to the volumes of alerts for each source IP, for each attack stage

PATRL – performance analysis

- Transfer learning performs well with cyber-relevant text.
 - but suffers when used directly for unknown alerts.
- Iteratively adds in pseudo-labeled data improves pred. for unknown and maintains perf for the known ones.
- Users can use MCDU to differentiate the quality of prediction for unknown alerts.

Transfer LM w/ Text Source(s)	Top 1 Acc.	Top 3 Acc.
Multinomial Naive Bayes (No LM)	.5452	.8025
LM: Wikipedia (Default)	.3535	.61
LM: Wiki + IMDB	.4357	.75
LM: Wiki + MITRE ATT&CK	.5928	.8786
LM: Wiki + CPTC/CCDC Suricata	.6462	.9048
LM: Wiki + All Suricata (64k)	.6871	.85
LM: Wiki + CVE Database	.6975	.8929
LM: Wiki + All Cyber-relevant Texts	8024	.9084
LM: Wiki + All Cyber + 1k Random PL(s	.8292	.98

Training — Testing	CPTC/CCDC	Unknown Test	
CPTC/CCDC	.9385 (.9742)	.7216 (.8001)	Þ
Unknown Test	.3116 (.62)	.9271 (.995)	

MCDU Values

HeATed Attack Campaign Examples – "CodeRed"

HeATing Different Adversaries (CPTC18)

"Calculated" Approach

HeATing Different Networks (CCDC18 w/ CPTC observations)

Our network-agnostic features allow HeAT to find similarities between strategies regardless of adversary or network