CAMLIS 2022: Temporal Attack Detection in Multimodal Cyber-Physical Systems with Sticky HDP-HMM

Dr. Andrew E. Hong, Peter M. Malinovsky, and Dr. Suresh Damodaran

Approved for Public Release; Distribution Unlimited.
Public Release Case Number 22-2488.
October 21, 2022

Cyber-physical Systems

${ }^{1}$ Image sources:

https://www.navy.mil/strategic/Naval_Aviation_Vision.pdf https://www.imef.marines.mil/Photos/igphoto/151202/

Background \& Motivation

- Problem: automatically identify attack events in time series
- Definite \& total knowledge of 'normal behavior' absent
\square Many cyber-physical systems (CPS) are multi-modal: what's "normal in one mode is 'abnormal' in another"
- Learning problem to infer the natural number of modes

Background \& Motivation (cont.)

- CPS produce a wealth of heterogeneous data: continuous (e.g. altitude, pressure), ordinal (e.g. floor number), nominal (e.g. commands, messages)
- Manual feature extraction remains the standard practice, but is costly \& time-consuming
- Bayesian model-based approach able to extract these events from many forms of signals

States \& Transitions

(a) Regular Transitions

(b) Anomalous Transitions

Modified Sticky Hierarchical Dirichlet Process Hidden Markov Model

- Inference on the latent state labeling z_{t} is how event transitions are determined
- Each latent state i has an associated collection of sufficient statistics or parameters θ_{i}

Global Dirichlet	$\beta \mid \gamma$	$\sim \operatorname{GEM}(\gamma)$	$i=1, \ldots$
Process Prior:	θ_{i}	$\sim H$	
Transition Matrix Prior:	$\pi_{i,}$	$\sim D P\left(\alpha \cdot \beta+\kappa \cdot \delta_{i}\right)$	$i=1, \ldots$
Latent State Transition:	$z_{t} \mid z_{t-1}$	$\sim \pi_{z_{t-1},}$	$t=1, \ldots, T$
Configuration Transition Prior:	$y_{t} \mid y_{t-1}, z_{t-1}, p^{z_{t-1}}$	$\sim p_{y_{t-1}, y_{t}}^{z_{t-1}}$	$t=1, \ldots, T$

Modified Sticky Hierarchical Dirichlet Process Hidden Markov Model (cont.)

MITRE

Inference Algorithm

```
Algorithm 1: Direct Assignment Gibbs Sampler for sHDP-
HMM
for \(i=1, \ldots, n\) do
    for \(t=1, \ldots, T\) do
        Decrement \(N\left[z_{t-1}^{(i)}, z_{t}^{(i-1)}\right], N\left[z_{t}^{(i-1)}, z_{t+1}^{(i-1)}\right]\)
        Sample the state labeling \(z_{t}^{(i)}\)
        if \(z_{t}^{(i)}=K^{(i)}+1\) then
            Introduce state \(K^{(i)}+1\) into array \(\beta^{(i)}\) and matrix
                    \(N\)
            Increment \(K^{(i)}\)
        Increment \(N\left[z_{t-1}^{(i)}, z_{t}^{(i)}\right], N\left[z_{t}^{(i)}, z_{t+1}^{(i-1)}\right]\)
    for \(j=1, \ldots, K^{(i)}\) do
        if \(N_{j}=0\) and \(N_{j}=0\) then
            Delete row and column \(j\) from \(N\)
    Update the count of unique states
        \(K^{(i)}=\mid j: z_{t}^{(i)}=j\) for \(t=1, \ldots, T \mid\)
    Sample the CRF auxiliary variable matrix \(M^{(i)}\)
    Sample the self-transition parameter(s)
    Sample the global weights \(\beta^{(i)}\)
    Sample the hyper-parameters
```


Avionics Testbed

- MIL-STD-1553, serial bus communication protocol standard, testbed
- Remote terminal (RT) components interact with common master device - bus controller (BC) through Alta eNet interface
- For example, GPS receivers, auto-pilot controllers, or flight control components such as ailerons, elevators, and rudders
- Attacks conducted on components, analyzed messages sent/received by the bus controller

Avionic Testbed 1553 Bus Traffic Experiments

Satellite 1553 Bus Experiments				
Attack	Attack Occurrence	Detected Occurrence	Detection	Description
Attack 0	$3451-4248$	$3451-4248$	TP	Denial of Service 1
Attack 1	4538	4538	TP	Noise Attack 1
Attack 2	4568	4568	TP	Noise Attack 2
Attack 3	4714	4714	TP	Noise Attack 3
Attack 4	4860	4860	TP	Noise Attack 4
Attack 5	5006	5006	TP	Protocol Violation 1
Attack 6	5152	5152	TP	Protocol Violation 2
Attack 7	5298	5298	TP	Protocol Violation 3
Attack 8	5444	$5443-5445$	TP	Protocol Violation 4
Attack 9	$5590-5968$	$5600,5647-5700$,	TP	Denial of Service 2
		$5740-5745,5773-5789$,		
Attack 10	6114	$5818-5834,5863-5879$,		
Attack 11	6405	$5908-5911$		
Attack 12	6551	6114	TP	Buffer Attack 1
Attack 13	N/A	6405	TP	Buffer Attack 2
Attack 14	6726	6551	TP	Anomalous Traffic 1
Attack 15	6872	N/A	FN	Atypical Traffic
Attack 16	7018	None	FN	Anomalous Traffic 2

iRobot Create ${ }^{\circledR} 2$

- iRobot consumer product
- Consider two kinds of attacks:

1. Blocking wall sensors
2. Obstructing tires
${ }^{1}$ Image source:
https://edu.irobot.com/what-we-offer/create-robot

iRobot Create ${ }^{\circledR} 2$ Experiments (cont.)

(a) Wall sensors and states under normal operation.

(c) Wall sensors and states under sensor attack.

(b) Current readings and states under normal operation.

(d) Current readings and states under actuator attack.

iRobot Create ${ }^{\circledR} 2$ Experiments

Roomba Experiments			
Experiment	Attack Vector	Data	Attack Occurrence
1	wall sensors	light bumpers, velocity	$(58,59)-(74,75)$
2	actuators	current, voltage	$(171,172)-(212,217)$
Experiment	Detected Occurrence	Start Attack	End Attack
1	$62-73$	TP	TP
2	$172-192$	TP	FN

MITRE

MITRE is a not-for-profit organization whose sole focus is to operate federally funded research and development centers, or FFRDCs. Independent and objective, we take on some of our nation's-and the world's-most critical challenges and provide innovative, practical solutions. Learn and share more about MITRE, FFRDCs, and our unique value at
https:\www.mitre.org

