

Threat Class Predictor

François Labrèche Serge-Olivier Paquette

Agenda

- Semantic representation of vulnerabilities
- Building an explainable threat score and trend score
- Dashboard
- Discussion
- Conclusion

Build an explainable machine learning framework to predict threats associated with disclosed vulnerabilities

Semantic Representation

- Uses Topic Modeling, specifically Latent Dirichlet Allocation (LDA)
- Built on filtered vulnerability descriptions from the NIST
- 30 topics generated
- Vector of 30 weights for each vulnerability

Semantic Representation

Topic vector example

Weight	Word
0.128	page
0.122	cross
0.121	html
0.118	site
0.109	script
0.070	xss
0.063	store
0.048	javascript
0.035	escape
0.034	web

Secureworks

Threat Score Supervised Machine Learning Model

- One model trained per threat class
- Uses vulnerability data and the topics as features
- Predicts the likelihood of an attack

- The length of the description
- The number of references available for the vulnerability at the time of publication
- The number of affected software configurations by this vulnerability
- The CVSSv2 score
- The CVSSv2 metrics
- Vulnerabilities from 2008 and up, from the NIST National Vulnerabilities Database

Dataset Labels

Exploits

ExploitDB

Packetstorm

• Github POCs

Malware

- ClamAV signatures
- CTU malware reports

Dataset	N samples
CVE Database	152,585
ExploitDB	22,441
Packetstorm	5,471
Github POCs	3,219
ClamAV	2,956
CTU	184

Evaluation

Two approaches used for managing the unbalanced data

- Class weighting
- Threshold-moving on f2 score

Setup

- 10-fold cross validation
- Random Forest Classifier
- Gridsearch

Gridsearch Parameter	Exploits	Malware
max depth	30	50
min samples leaf	8	6
min samples split	22	16
n trees	300	200

Metrics of interest

- Accuracy
- Recall
- F2 score

Priority goal

- Identify attacks, i.e., true positives
- Misrepresented False Positives

Exploit Publication

Malware Inclusion

Metric	Value	Metric	Value
Accuracy	88.81%	Accuracy	98.01%
Recall	79.92%	Recall	87.96%
Precision	36.92%	Precision	47.77%
F1-Score	50.51%	F1-Score	61.90%
F2-Score	64.82%	F2-Score	75.27%
Threshold	0.34	Threshold	0.46

Exploit Publication

Malware Inclusion

Metric	Value	Metric	Value
Accuracy	88.81%	Accuracy	98.01%
Recall	79.92%	Recall	87.96%
Precision*	36.92%	Precision*	47.77%
F1-Score	50.51%	F1-Score	61.90%
F2-Score	64.82%	F2-Score	75.27%
Threshold	0.34	Threshold	0.46

* False positives are misrepresented: they are higher due to our incomplete dataset

Trend Score

Previously trained topic model applied to social network data and dark web forum posts

Secureworks

Trend Score

Trends are averaged between sources and over the past 30 days

Trend Score

Vulnerabilities are linked to trends using a dot product

Trending Topics Weights

Visual Dashboard

Combination of both threat score and trend score

- X axis: Threat score
- Y axis: Trend score

With this dashboard, an analyst can identify vulnerabilities that go under the radar of what's trending.

Visual Dashboard

Vulnerability with predicted exploits:

• CVE-2022-34265

Vulnerability with predicted malware:

• CVE-2022-22047

Vulnerability matching trends:

• CVE-2022-35872

Discussion

An explainable framework

Top topics when predicting the publication of exploits

- Topic 22 Parameter and SQL injections
- Topic 29 Google and OAuth
- Topic 26 Cross-Site Scripting (XSS)
- Topic 23 Denial of Service (DOS)

Discussion

An explainable framework

Top topics when predicting the inclusion of malware

- Topic 21 Use of Windows handles •
- Topic 6 PDF vulnerabilities
- Topic 4 Heap and buffer overflows

19

Conclusion

01

We presented a coherent and explainable framework to predict the threat associated with a vulnerability

02

Our results showcase vulnerabilities with a high likelihood of being included in real attacks that may be overlooked by the cybersecurity community

Secureworks

Thank you

Questions?