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Research Goals

Existing machine learning based approaches to malware detection have
not yet leveraged uncertainty in a systematic manner.

Cyber security intrinsically requires operating under uncertain
conditions, so uncertainty should not be ignored.



Why can’t we just use the softmax output
orobabilities?  w©ooon
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The Quantification of Uncertainty

Suppose a cat/dog classifier trained on zoomed out images of dogs and cats...

]

Epistemic Uncertainty

Uncertainty due to a lack of
similar data. Aleatoric Uncertainty

It y,Ol,J ha.d more cat/dog Inherently confusing because both classes are
training images focused on present

tails, this would be easier.



Bayes Rule in the context of ML

Likelihood of the
data given the

model parameters.
Posterior belief about model A

parameters given the data. { | |
~ P(D|8,M)P(B|M)

Prior belief about
model parameters.

P(6|D,M) = PO

Model Parameters Data Model Class Y

Likelihood of the data given the model class,
with model parameters having been integrated
out. Useful for model comparison.



Bayesian inference operates on distributions
to capture beliefs and uncertainty.

Point estimates.

The proper
qguantification of
uncertainty
using
distributions.

Figure 1. Left: each weight has a fixed value, as provided by clas-

sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.

Blundell, C., Cornebise, J., Kavukcuoglu, K. and Wierstra, D., 2015. Weight
uncertainty in neural networks. arXiv preprint arXiv:1505.05424. °



Usually you begin by selecting a model class. Then, suppose you were

asked to draw what you think the right model is, without observing any
data...
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Image from:
https://en.wikipedia.org/wiki/Gaussian process



https://en.wikipedia.org/wiki/Gaussian_process

Once you start observing data, the possible functions you can draw
become constrained.

Prior Posterior Prediction with Uncertainty

Uncertainty is higher

https://en.wikipedia.org/wiki/Gaussian process when far from the da8ta.

Image from:



https://en.wikipedia.org/wiki/Gaussian_process

Synergy

Uncertainty + Machine Learning Based Malware Detection




Model Example: MalConv

Raw Byte

—{Embeddingj

Figure 1. Architecture diagram of MalConv model.

https://arxiv.org/pdf/1710.09435.pdf

Temporal Max—Pooling]

v
[Fully Connectedj

y

Softmax

Can we Bayesify MalConv?
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https://arxiv.org/pdf/1710.09435.pdf

Bayesian Dropout

* Variational inference approach for Bayesian deep learning.
 https://arxiv.org/pdf/1506.02142.pdf
* Probably the easiest method to implement and deploy.

* Essentially, add dropout to all layers, and leave dropout on during
prediction. A sample is run through the model multiple times to
generate the predictive distribution.

* Getting well calibrated uncertainties is a bit trickier as dropout
probabilities need to be tuned: https://arxiv.org/pdf/1705.07832.pdf
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https://arxiv.org/pdf/1506.02142.pdf
https://arxiv.org/pdf/1705.07832.pdf
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(a) Standard Neural Net (b) After applying dropout.
Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:

An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf



https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Bayesian MalConv (MalBayes)

Dropout as a Bayesian

MalConv Approximation

MalBayes
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Alternatively, we can ensemble...

Temporal Max-Pooling
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Figure 1. Architecture diagram of MalConv model.
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Leveraging Uncertainty for Improved
Static Malware Detection Under
Extreme False Positive Constraints



Uncertainty on Errors and New AV Classes
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Out of

Distribution Data Detection Using
Dropout Bayesian Neural Networks

AAAI 2022.
OOD Num/Class n=100 n=>50 n=25
Metric AUC Recall AUC Recall AUC Recall
Experiment  Model Features
EMBER2018 LR Last 0.789 0.704 0.786 0.682 0.778 0.650
Last+Spread | 0.793 0.718 0.783 0.689 0.766 0.658
RF Last 0.757 0.735 0.752  0.727  0.748 0.714
Last+Spread | 0.791 0.784 0.782 0.764 0.770 0.743
Brazilian LR Last 0.685 0.645 0.680 0.607 0.668 0.584
Last+Spread | 0.741  0.620 0.734 0.617 0.712 0.605
RF Last 0.724  0.693 0.705 0.674 0.679 0.652
Last+Spread | 0.839 0.797 0.813 0.772 0.776 0.736




Minimizing compute costs:
When should we run more
expensive analysis?



Can we optimize the decision process?

| think this file may
have some interesting
behavior...

Automated Automated
Static Analysis Dynamic Analysis

Human Analysis
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CAPA Rules

rule:

meta:

name: capture webcam image

namespace: collection/webcam
author: johnk3r

scope: function

atté&ck:

- Collection::Video Capture [T1125]

examples:

- a30101595f6f28ab2f4b@b2cd177c3c4d2ab34a355ab7761a3795d0887c24ada: 0x4011C0

features:

or:
- and:
- api: capCreateCaptureWindow
- basic block:
- and:
- api: SendMessage
— number: 0x40a = WM_CAP_DRIVER_CONNECT
- optional:
- basic block:
- and:
— api: SendMessage
— number: 0x40B = WM_CAP_DRIVER_DISCONNECT
- basic block:
- and:
- api: SendMessage
- number: 0x419 = WM_CAP_FILE_SAVEDIB
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rule:
meta:

name: encrypt data using Curve25519

namespace: data-manipulation/encryption/elliptic-curve

author: dimiter.andonov@mandiant.com

scope: basic block

atté&ck:

- Defense Evasion::0bfuscated Files or Information [T1027]

examples:
0a0882b8da225406cc838991b5f67d11:0x4135f6
0a0882b8da225406cc838991b5f67d11:0x416f51
80372de850597bd9%e7e021a94f13f0al: 0x406480
80372de850597bd9%e7e021a94f13f0al: 0x4086T4
features:

# initializes a 32-byte array with
# arrayl[@0] = 0xf8,
# array[31] = array[31] & ox3f | 0x40
- and:
- and:
- number: Oxf8
- mnemonic: and
- and:
— number: Ox3f
- mnemonic: and
- and:
- number: 0x40
— mnemonic: or
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MalConv Accuracy

Predicting CAPA Outputs

CAPA Prediction Accuracies By Rule
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CAPA Prediction AUCs By Rule
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How much expensive CAPA analysis do we need?

360

W
AN
Ul

CAPA rules correctly classified (out of 351)

330

355

350 1

340 1

3351

MalConv (mean)
- | GBM (mean)
---- 99.9%
-------- LGBM 99.9% Validation Threshold
---- LGBM 99.9% Test Threshold
-------- MalConv 99.9% Validation Threshold
MalConv 99.9% Test Threshold
MalConv (std)
LGBM (std)

20

40

60 80 100

Percent of data where CAPA extraction was run ordered by predictive entropy
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Can we optimize the decision process?

Automated Automated

) . , _ Human Analysis
Static Analysis Dynamic Analysis

Bayesian MalConv with sampling: 0.02 seconds per file
EMBER Feature extraction: 0.09 seconds per file

CAPA feature extraction: 45.75 seconds per file
Running dynamic analysis: 526 seconds per file

Running Bayesian MalConv on a file is over 26,300 times faster than running dynamic analysis!
23



Can we optimize the decision process?

I’m not sure and | think the Dynamic
Analysis model will do well....

Automated Automated
Static Analysis Dynamic Analysis

Human Analysis
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MalConv -> Dynamic

Malware Detection Accuracy
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Total Runtime (seconds)

107
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Thanks!

André T. Nguyen, Ph.D.

Director of Machine Learning

JURA Bio, Inc.
Boston, MA
an@jurabio.com
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