Minimizing Compute Costs: When Should We Run More Expensive Malware Analysis?

Andre T. Nguyen, Richard Zak, Luke E. Richards, Maya Fuchs, Fred Lu, Robert Brandon, Gary Lopez Munoz, Edward Raff, Charles Nicholas, James Holt

Booz | Allen | Hamilton

Research Goals

Existing machine learning based approaches to malware detection have not yet leveraged uncertainty in a systematic manner.

Cyber security intrinsically requires operating under uncertain conditions, so uncertainty should not be ignored.

The Quantification of Uncertainty

Suppose a cat/dog classifier trained on zoomed out images of dogs and cats...

Epistemic Uncertainty

Uncertainty due to a lack of similar data.

If you had more cat/dog training images focused on tails, this would be easier.

Aleatoric Uncertainty

Inherently confusing because both classes are present.

Bayes Rule in the context of ML

out. Useful for model comparison.

Bayesian inference operates on distributions to capture beliefs and uncertainty.

Figure 1. Left: each weight has a fixed value, as provided by classical backpropagation. Right: each weight is assigned a distribution, as provided by Bayes by Backprop.

Blundell, C., Cornebise, J., Kavukcuoglu, K. and Wierstra, D., 2015. Weight uncertainty in neural networks. *arXiv preprint arXiv:1505.05424*.

Point estimates.

The proper quantification of uncertainty using distributions. Usually you begin by selecting a model class. Then, suppose you were asked to draw what you think the right model is, without observing any data...

Image from: https://en.wikipedia.org/wiki/Gaussian process

Once you start observing data, the possible functions you can draw become constrained.

Synergy

Uncertainty + Machine Learning Based Malware Detection

Model Example: MalConv

Figure 1. Architecture diagram of MalConv model.

Can we Bayesify MalConv?

https://arxiv.org/pdf/1710.09435.pdf

Bayesian Dropout

- Variational inference approach for Bayesian deep learning.
- <u>https://arxiv.org/pdf/1506.02142.pdf</u>
- Probably the easiest method to implement and deploy.
- Essentially, add dropout to all layers, and leave dropout on during prediction. A sample is run through the model multiple times to generate the predictive distribution.
- Getting well calibrated uncertainties is a bit trickier as dropout probabilities need to be tuned: <u>https://arxiv.org/pdf/1705.07832.pdf</u>

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Bayesian MalConv (MalBayes)

MalConv

Dropout as a Bayesian Approximation

MalBayes

Alternatively, we can ensemble...

Figure 1. Architecture diagram of MalConv model. *Figure 1.* Architecture diagram of MalConv model. *Figure 1.* Architecture diagram of MalConv model.

Figure 1. Architecture diagram of MalConv model. *Figure 1.* Architecture diagram of MalConv model. *Figure 1.* Architecture diagram of MalConv model.

Figure 1. Architecture diagram of MalConv model. Figure 1. Architecture diagram of MalConv model. Figure 1. Architecture diagram of MalConv model.

Figure 1. Architecture diagram of MalConv model. Figure 1. Architecture diagram of MalConv model. Figure 1. Architecture diagram of MalConv model.

Figure 1. Architecture diagram of MalConv model. Figure 1. Architecture diagram of MalConv model. Figure 1. Architecture diagram of MalConv model.

Figure 1. Architecture diagram of MalConv model. Figure 1. Architecture diagram of MalConv model. Figure 1. Architecture diagram of MalConv model.

Leveraging Uncertainty for Improved Static Malware Detection Under Extreme False Positive Constraints

Workshop on Adaptive Cyber Defense at IJCAI 2021.

Uncertainty on Errors and New AV Classes

(a) EMBER, Bayesian MalConv

(b) EMBER, Bayesian Logistic Regression

(a) Bayesian MalConv

(b) Bayesian Logistic Regression

Out of Distribution Data Detection Using Dropout Bayesian Neural Networks

AAAI 2022.

OOD		$\operatorname{Num/Class}$	n=100		n=50		n=25	
Experiment	Model	Metric Features	AUC	Recall	AUC	Recall	AUC	Recall
EMBER2018	LR	Last Last+Spread	0.789 0.793	0.704 0.718	0.786 0.783	0.682 0.689	0.778 0.766	0.650 0.658
	RF	Last Last+Spread	0.757 0.791	0.735 0.784	0.752 0.782	0.727 0.764	0.748 0.770	0.714 0.743
Brazilian	LR	Last Last+Spread	0.685 0.741	0.645 0.620	0.680 0.734	0.607 0.617	0.668 0.712	0.584 0.605
	RF	Last Last+Spread	0.724 0.839	0.693 0.797	0.705 0.813	0.674 0.772	0.679 0.776	0.652 0.736

Minimizing compute costs: When should we run more expensive analysis?

CAMLIS 2022.

Can we optimize the decision process?

CAPA Rules

1	rule:
2	meta:
3	name: capture webcam image
4	namespace: collection/webcam
5	author: johnk3r
6	scope: function
7	att&ck:
8	– Collection::Video Capture [T1125]
9	examples:
10	- a30101595f6f28ab2f4b0b2cd177c3c4d2ab34a355ab7761a3795d0887c24ada:0x4011C0
11	features:
12	- or:
13	- and:
14	- api: capCreateCaptureWindow
15	- basic block:
16	- and:
17	- api: SendMessage
18	<pre>- number: 0x40a = WM_CAP_DRIVER_CONNECT</pre>
19	- optional:
20	- basic block:
21	- and:
22	- api: SendMessage
23	<pre>- number: 0x40B = WM_CAP_DRIVER_DISCONNECT</pre>
24	- basic block:
25	- and:
26	- api: SendMessage
27	<pre>- number: 0x419 = WM_CAP_FILE_SAVEDIB</pre>

1	rule:
2	meta:
3	name: encrypt data using Curve25519
4	<pre>namespace: data-manipulation/encryption/elliptic-curve</pre>
5	author: dimiter.andonov@mandiant.com
6	scope: basic block
7	att&ck:
8	Defense Evasion::Obfuscated Files or Information [T1027]
9	examples:
10	– 0a0882b8da225406cc838991b5f67d11:0x4135f6
11	- 0a0882b8da225406cc838991b5f67d11:0x416f51
12	- 80372de850597bd9e7e021a94f13f0a1:0x406480
13	- 80372de850597bd9e7e021a94f13f0a1:0x4086f4
14	features:
15	<pre># initializes a 32-byte array with</pre>
16	<pre># array[0] = 0xf8,</pre>
17	# array[31] = array[31] & 0x3f 0x40
18	- and:
19	- and:
20	- number: 0×f8
21	<pre>- mnemonic: and</pre>
22	- and:
23	- number: 0x3f
24	<pre>- mnemonic: and</pre>
25	- and:
26	- number: 0×40
27	- mnemonic: or

Predicting CAPA Outputs

How much expensive CAPA analysis do we need?

Can we optimize the decision process?

Bayesian MalConv with sampling: 0.02 seconds per file EMBER Feature extraction: 0.09 seconds per file CAPA feature extraction: 45.75 seconds per file Running dynamic analysis: 526 seconds per file

Running Bayesian MalConv on a file is over 26,300 times faster than running dynamic analysis!

Can we optimize the decision process?

MalConv -> Dynamic

Thanks!