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OpenAI Unsupervised Sentiment Neuron

-OpenAI

Train RNN to predict next 
character

Trained on reviews, network 
learns concept of sentiment

Text represented as UTF8 
bytes

85 Million parameters in the 
model

Trained 1 month on 4 GPUs, 
12,500 bytes/sec



Faster training

More explicit control over receptive field

Benefit from other efforts to improve training/inference speed

Can we replace recurrence with convolutions?



Model Overview

Given an input byte sequence, predict every byte in the sequence (same padded 
convolutions)

710,896 Parameters in the full model

Trained on 1 V100 GPU (16 GB)

~2,400,000 bytes/second

Sequences up to 800,000 bytes long before running into memory constraints

Training can be modified to be semi-supervised, not explored in this talk

Can produce embedding for each byte in a sequence or a fixed length global 
embedding



Temporal Convolutions

Output as timestamp T 
only conditioned on 
information prior to T

Stacking grows 
receptive field, but still 
constrained prior to T



Convolution Additions

Dense Connections: Append a convolutional layer’s 
output to its input. Stacks of layers have access to all 
prior layer output, at a cost of growing the input size 
every time.

Dilated Convolutions: Increases receptive field without 
increasing parameter count.



Autoencoder Design

Local Encoder: Pair of same padded temporal CNNs, one in each direction, 
produces an output the same length as the input sequence

Global Encoder: CNN based on the output of the local encoder, with a global max 
pooling layer to produce a fixed size output

Decoder: Fully connected network taking the local and global encoder outputs 
and predicting each input byte

Local embedding model: embeds each position in a byte sequence

Global embedding model: embeds a byte sequence to a fixed size representation



Local Encoder

Bytes first embedded with a length 8 embedding vector

6 layers of temporal convolutions:

• Width 15

• 16 features per layer

• Dilation rates in order: 1, 1, 5, 9, 13, 1

Two copies of this network with the same hyperparameters, one temporal and 
one reverse temporal

MUST IMPLEMENT CORRECTLY!

Both networks concatenated together at the end to form the local embedding



Global Encoder

Input is from local embedding section, run through LayerNorm

9 layers of dense convolutions

Width 7, 32 features per layer

Layers 1 and 3 have stride 3, width 3 average pooling after layer 6

Layers 5/8, 6/9 have dilations of 3, 5 respectively

elu activation

Global max pool to produce fixed size vector

Other designs possible (malconv2), main factor is to produce a fixed size 
embedding



Decoder

Inputs:

• Local embedder output

• Global embedder output (broadcast to the local output shape)

• 1 width 17 Convolutional layer, constrained so that the weights at position 
T are always 0

4 hidden layers with 64 features, output of shape (sequence length, 256). Leaky 
relu activations

Cross entropy loss calculated for each byte prediction, averaged for the training 
loss



Evaluating Utility
Testing with identical model hyperparameters



Implementation Correctness Test

Cornerstone of this approach is the temporal convolutions ensuring at each 
timestep T we can see the rest of the sequence, but not T itself

Errors in implementation will result in the model short-circuiting and learning to 
pass through the input instead of learning from the surrounding context

Models should not be able to achieve a reconstruction accuracy greater than 
1/256 (0.39%) on a random uniform dataset



Wiki XML Dumps

Originally an NLP technique, how does this approach handle text data?

Testing on Wiki dumps, articles wrapped in XML, data contains a mix of natural 
language and more programmatic structure

Collected ~1gb for each of English, German, Greek, Hebrew, Japanese, Russian, 
Chinese

Evaluating general accuracy in predicting the correct byte in our training data

As all datasets contain a large amount of XML, also evaluate the English model 
across all languages



Wiki Data Example

<revision>

<id>28838693</id>

<parentid>21294607</parentid>

<timestamp>2020-08-02T13:26:03Z</timestamp>

<contributor>

<username> />בוט-חזרתי username>

<id>660210</id>

</contributor>

<minor />

<comment> ]]באמצעות )קו מפריד ⟸מינוס  WP:JWB]])</comment>

<model>wikitext</model>

<format>text/x-wiki</format>

<text bytes="844" xml:space="preserve">''' , משמעותו לא ברורה[[. יהודי צפון אפריקה]]הקיים בקרב [[ שם משפחה יהודי]]הוא ''' פואנקינוס
&אך הוצע קשר למילה  quot;[[ &[[פיניקים quot;.{{ &בעיתון [[ אברהם טל|(זמר)אברהם טל ]]ראיון עם |הערה quot;[[ &[[פי האתון quot;, [[16 במאי ]]

[[2017]]}}

|פירושונים}}

[[.ישראלי[[ ]]זמר]]–[[ אברהם פואנקינוס טל|(זמר)אברהם טל * ]]

– {{David Foenkinos|אנ}}[[ דוד פואנקינוס* ]] [[.יהודי צרפתי|יהדות צרפת[[ ]]סופר]]

– {{Stéphane Foenkinos|צר}}[[ סטפן פואנקינוס* ]] [[.צרפת]]מ[[ יהודי[[ ]]במאי]]ו[[ שחקן]]



Byte Accuracy 
Results

Each model is skillful in its trained 
language

English model can predict XML in the 
other language datasets, but accuracy 
suffers on the language specific 
content

Language 
Model

English 
Model

English 68.9% 68.9%

German 68.1% 54.4%

Greek 82.1% 56.7%

Hebrew 74.1% 54.3%

Japanese 71.5% 35.3%

Russian 79.7% 58.6%

Chinese 63.6% 34.4%



MNIST

28x28 grayscale images of handwritten digits

Test on increasingly complex data representations:

• Ideal: Image array flattened to length 784 vector

• PNG: image saved in a compressed lossless format, ~250 bytes/image

• JPG: Image saved in a lossy format, ~233 bytes/image

Autoencoder trained on the MNIST training set (50k samples)



MNIST Byte 
Accuracy Results

Byte value 0 is common in the base 
data, accuracy is reported for all bytes 
and non-0 bytes

Pixels in the ideal format are better 
suited for regression, but we still 
evaluate based on classification

Accuracy Non-0 
Accuracy

Ideal 88% 36%

PNG 32% 25%

JPG 7% 7%



MNIST Classification Evaluation

Is the autoencoder accomplishing anything useful?

After training on the 50k samples, 10k samples from the test set are embedded 
with the global encoder

Use the embeddings to train a random forest to predict the digit

Compare results from an untrained and trained model to see if the training is 
improving our features or if the model just functions as an extreme learning 
machine

Compare results to just training a random forest directly on the pixel values from 
the ideal format



MNIST 
Classification 
Accuracy

Data representation matters, all 
methods lose to direct pixel model

Accuracy decreases as the complexity of 
the representation increases

JPG byte accuracy was only 7%, but still 
learned a decent model

Self supervised training improved the 
final representations

Trained 
Accuracy

Untrained 
Accuracy

Ideal 79.3% 71.6%

PNG 59% 26.9%

JPG 48.7% 26.3%

Direct Pixel 95.3% N/A



SOREL Malware

How does the autoencoder compare to a strong human baseline on complex data?

SOREL includes raw malware samples and EMBER features, train a model to 
predict malware tags 

Autoencoder trained on the oldest 1 million samples in the SOREL set, then 200k 
later samples were embedded with the global embedding model

Model had ~17% byte reconstruction accuracy after training

3 models trained, one using the autoencoder embeddings, one using the EMBER 
features, and one with both



SOREL 
Classification 
Results

Autoencoder only model is 
competitive with the EMBER features

All results are very close, the 
underlying malware tags are 
themselves ML derived so label noise 
likely a limiting factor

EMBER AE Joint

Accuracy 83.97% 83.96% 83.97%

Precision 96.88% 96.88% 96.87%

Recall 92.92% 92.93% 92.94%



SOREL Joint Model Feature Importance
43 of top 100 features are from the autoencoder embedding



Conclusions

Byte reconstruction is a useful self supervised task and appears to be applicable to 
a variety of data formats

Byte reconstruction has a large design space for the neural networks, the design 
presented here is one approach but not the only approach

Model design is ultimately constrained by desired training speed and volume of 
training data, multi-GPU training likely viable as well

Feature engineering is still a valuable activity for ML, but this approach can get you 
off the ground while you work on that




