

# **Azure Sign-in Detection** Tad ZeMicheal, PhD | CAMLIS Oct 20, 2022

Heterogeneous Graph Embedding for Malicious





# Agenda

- **Problem and Motivation**

- Key Take-Aways



Background: Azure AD Authentication and Azure AD logs

Authentications as a Graph

Model Training and Results: Relational Graph Neural Network





## Problem





#### Other graph approaches fail to inference on previously unseen nodes.



Heterogenous graph-based embedding allows:

Capture of structural identity and feature identify of nodes

Ability to capture evolving attacks due to connectedness of users

Minimized efforts on feature engineering tasks

[1] Liu, Ziqi, et al. "Heterogeneous Graph Neural Networks for Malicious Account Detection. [2] Rao, Susie Xi, et al. "xFraud: explainable fraud transaction detection." Proceedings of the VLDB Endowment 3 (2021)<sup>,</sup>

## Motivation

- logs.

 This work follows on success of application of heterogenous GNN embedding on cyber applications such as fraud detection<sup>[1,2]</sup>

 Relation graph neural network is used to capture relation and graph structure of Azure authentication



- to the application

• Azure AD logs provide information about sign-ins and how the resources are used by the users Examples of information included in Azure AD logs about each access attempt:

- User identity (name, email, ID)
- Application (name, ID)
- Device information (device name, browser, OS)
- IP address
- Location (city, state, country)
- Date and time
- Authentication result (success or failure, reason)

## **Azure Authentication Process**

 Registered resources are protected by Azure AD through the Azure authentication process • Each access attempt is verified by Azure AD to make sure the user (through the given IP, device) has the access right





#### Activity Details: Sign-ins

| asic info Location De        | vice info Authentication Details         | Conditional Access       | Report-only ···                          |  |  |
|------------------------------|------------------------------------------|--------------------------|------------------------------------------|--|--|
| Date                         | 9/30/2021, 6:00:16 PM                    | User                     | Isabella Simonsen                        |  |  |
| Request ID                   | b8a2974d-21de-4ab6-b67e-<br>6fbf21101e01 | Username                 | isimonson@contoso.com                    |  |  |
| Correlation ID               | 386f50b3-6fe5-461c-be16-                 | User ID                  | 353564fa-8fbc-4fec-857f-<br>ba487040f6f8 |  |  |
|                              | 5f30c1b3527c                             | Sign-in identifier       | isimonsen@contoso.com                    |  |  |
| Authentication requirement   | Single-factor authentication             | User type                | Member                                   |  |  |
| tatus                        | Success                                  | Cross tenant access type | None                                     |  |  |
| continuous access evaluation | No                                       | Client app               | N/A                                      |  |  |
|                              | Follow these steps:                      | Client app               | N/A                                      |  |  |
| roubleshoot Event            | 1. Launch the Sign-in                    | Application              | Azure Portal                             |  |  |
|                              | 2. Review the diagnosis and              | Application ID           | c44b4083-3bb0-49c1-b47d-<br>974e53cbdf3c |  |  |
|                              | act on suggested fixes.                  | Resource                 | Windows Azure Service Manageme<br>API    |  |  |
|                              |                                          | Resource ID              | 797f4846-ba00-4fd7-ba43-<br>dac1f8f63013 |  |  |
|                              |                                          | Resource tenant ID       | bf85dc9d-cb43-44a4-80c4-<br>00000000000  |  |  |
|                              |                                          | Home tenant ID           | bf85dc9d-cb43-44a4-80c4-<br>00000000000  |  |  |
|                              |                                          | Home tenant name         |                                          |  |  |
|                              |                                          | Client app               | Browser                                  |  |  |

Source: <a href="https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/reference-basic-info-sign-in-logs">https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/reference-basic-info-sign-in-logs</a>

### **Azure Sign-On Authentication** Sample of Azure AD Sign-in Logs

| Details                    |          |                          |                                                                      |               |  |  |  |
|----------------------------|----------|--------------------------|----------------------------------------------------------------------|---------------|--|--|--|
| Basic info                 | Location | Device info              | Authentication Details                                               | Conditional A |  |  |  |
| Date                       |          | 4/16/2021                | , 6:26:30 PM                                                         |               |  |  |  |
| Request ID                 |          | f68a019d-                | f68a019d-372a-4763-9783-c0af80dd0100                                 |               |  |  |  |
| Correlation ID             |          | a1c3a648-                | a1c3a648-db13-4716-b9bf-1423836ff217                                 |               |  |  |  |
| Authentication requirement |          | ent Single-fact          | Single-factor authentication                                         |               |  |  |  |
| Status                     |          | Failure                  | Failure                                                              |               |  |  |  |
| Sign-in error code         |          | 50126                    | 50126                                                                |               |  |  |  |
| Failure reason             |          | Error valid<br>password. | Error validating credentials due to invalid username or<br>password. |               |  |  |  |



- There are 3 main entities involved in each authentication event:
  - The user who initiated the access request
  - The device used for the access request
  - The service being requested for access
- The authentication activities can be represented by a graph
  - The entities (user/device/service) are the nodes
  - Involvement in an access request links the user, device, and service nodes with the authentication node
  - Each authentication node will be connected to the 3 key entity nodes involved
- Each entity node can link to multiple authentication nodes
- A user can authenticate multiple times
  - A device can be used to authenticate multiple times
  - A service can be requested access for multiple times

## **Authentication Graph**





#### Input:

- G = (V, E), where V are nodes & E are connecting edges
- V types: User (U), Device (D), Service (S) and Authentication (A)
- V: size of nodes
  - |V| = # unique users + # unique devices + # unique services + # authentications
- X : feature matrix of node features
  - Authentication features (aggregated)
  - One-hot encoding (OHE) of categorical features
- E: three types of relations connecting authentication node to user, service, and device nodes
- Output:
  - Embedding of authentication nodes

## **Graph Structure Formulation**





- Given graph G (V, E, X), learn an embedding of authentication
  - Emb(A(t)) = f(U, D, S, A)
  - Where *U*, *D*, *S*, *A* are heterogenous nodes of graph *G*
  - A(t) is an authentication node embedding at time t
- Since A(t) nodes are distinct in time t, all of time dependent dynamic features are associated as feature in A(t) nodes.
- An Emb(A(t)) can be used for downstream task.
- For this model we tested Relational graph neural network (RGCN) as f to learn the embedding of heterogenous Azure graph.
- A semi supervised training is used to learn embedding of target nodes involved. • Target nodes in this case are the authentication nodes

### **Proposed Model** Utilizing a relational graph neural network



## **Relational Graph Neural Network (R-GCN)**

- R-GCN generalizes GCN to handle different relationship between entities.
- R-GCN uses different weights for different edge types of Heterogenous graph
  - Relational GCN (RGCN):

$$\mathbf{h}_{v}^{(l+1)} = \sigma \left( \sum_{\boldsymbol{r} \in R} \sum_{u \in N_{v}^{r}} \frac{1}{c_{v,r}} \mathbf{W}_{\boldsymbol{r}}^{(l)} \mathbf{h}_{u}^{(l)} + \mathbf{W}_{0}^{(l)} \mathbf{h}_{v}^{(l)} \right)$$

• Unlike GCN edges of same relation r are associated with same projection W<sub>r</sub>

Schlichtkrull, Michael, et al. "Modeling relational data with graph convolutional networks."













#### Variant of convolutional neural network (CNN) which operate directly on graphs

- CNN: operate on Euclidean space data
- GCN learns the features by aggregating weighted features of neighboring nodes
- Applications
  - Node/edge classification
  - Edge prediction
  - Fraud detection
  - Recommendation

## **Graph Convolutional Networks**

GCN: operate on irregular structures defined by nodes and edges



[1] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016). [2] Understanding Graph Convolutional Networks for Node Classification. https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b











- Number of raw authentication events: 315,234
- Raw feature size: 60
- Training set:
  - # Events: 45,975
  - # Features: 83
  - # Status failure (negative example) : 5,518
- Testing set:
  - # Events: 11,972
  - # Fraud events (negative example): 71
- Graph:
  - # Nodes: 62K
  - # Edges: 275,850

## Azure Log Dataset

• Azure log data of 3 months of 199 selected users with 2 compromised users for 4 days of login events.



### • One Hot Encoding (OHE): categorical features

- 'date\_hour']
- Aggregation by: ["service", "user", "device", "timestamp"]
  - sum, unique count, max



• For semi-supervised training, a binary feature of

- **StatusFailure**: [Success/Failure]

## Feature Preprocessing

• ['riskState', 'deviceDetail.trustType', 'riskLevelDuringSignIn', 'riskLevelAggregated', 'clientAppUsed', 'deviceDetail.operatingSystem',

• Indicates whether an authentication results "success" or "failure" due to various reasons



# Averaged AUC performance of identifying malicious test events using RGCN & Isolation Forest

### **Experimental Result for Task 1** Task 1: Ability to identify malicious authentication requests





- Evaluated by taking median of anomaly scores across all services requested by a user per time period.
  - Detects users' activity on all application requested.
- Models' performance on aggregated authentication.

### **Experimental Result for Task 2** Task 2: Ability to detect malicious users on aggregated authentication requests





### **Ranked Anomalous Based on RGCN Scores** Daily rank score of users averaged across services requested

|       | UserId                               | ServiceId                            | FraudLabel | StatusFlag | RGCN     | RGCN_IF  |
|-------|--------------------------------------|--------------------------------------|------------|------------|----------|----------|
| 2136  | eada5db7-3ada-45de-a971-2e985557825a | 00000002-0000-0ff1-ce00-000000000000 | 1          | 1          | 0.998395 | 0.769497 |
| 12306 | eada5db7-3ada-45de-a971-2e985557825a | 194ffad0-4c5c-4c53-997d-eb3fdf026cc7 | 1          | 1          | 0.995080 | 0.761211 |
| 53609 | 6f6beb84-2600-4ee1-b035-26915aec1660 | c00e9d32-3c8d-4a7d-832b-029040e7db99 | 0          | 1          | 0.963712 | 0.716407 |
| 53068 | e3bde834-d0f4-4edb-8953-c84c6101002e | baaa4ff1-f56d-4f79-8a75-4c0cdf02e84a | 1          | 1          | 0.936561 | 0.688361 |
| 5404  | e3bde834-d0f4-4edb-8953-c84c6101002e | 00000003-0000-0ff1-ce00-000000000000 | 1          | 0          | 0.906521 | 0.657165 |
| 12936 | 283c1cb1-d3cd-455f-b449-1ee8d0f52cca | 1fec8e78-bce4-4aaf-ab1b-5451cc387264 | 0          | 1          | 0.863309 | 0.622619 |
| 53615 | 6f6beb84-2600-4ee1-b035-26915aec1660 | c00e9d32-3c8d-4a7d-832b-029040e7db99 | 0          | 1          | 0.854788 | 0.606173 |
| 2132  | eada5db7-3ada-45de-a971-2e985557825a | 00000002-0000-0ff1-ce00-000000000000 | 1          | 1          | 0.848178 | 0.602308 |
| 18814 | 283c1cb1-d3cd-455f-b449-1ee8d0f52cca | 29d9ed98-a469-4536-ade2-f981bc1d605e | 0          | 0          | 0.831909 | 0.596086 |
| 12889 | 0df6b250-a5d8-4290-848e-29bf5fe32f9b | 1fec8e78-bce4-4aaf-ab1b-5451cc387264 | 0          | 1          | 0.815989 | 0.599546 |

#### Successful login detected as fraud



#### Adapting log authentication as GNN allows us to learn a richer embedding of authentication on both structural and individual entities involved without much handcrafted feature learning

- By modeling every "authentication" as a target node, the model avoids the challenge of depending on modeling temporal historical user login information
- The inference on authentication is treated as an inductive setting on new unseen nodes
- Using RGCN semi supervised approach allows the learning to be less dependent on large amount of labelled data
- RGCN embedding on malicious authentication achieved better AUC performance compared with Isolation Forest

## **Conclusion and Next Steps**



nvidia.com/try-morpheus

#### Try Morpheus in LaunchPad Immediate, short-term remote access

#### Develop with Morpheus Get Started in GitHub



https://github.com/nv-morpheus







