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Problem

Traditional rule-based 
heuristics do not flag all 

malicious log-ins.

1 2 3

Fully supervised ML 
methods require massive 

amounts of labelled 
data.

Other graph approaches 
fail to inference on 

previously unseen nodes.
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Motivation

Heterogenous graph-based embedding allows:

• This work follows on success of application of 
heterogenous GNN embedding on cyber applications 
such as fraud detection[1,2]

• Relation graph neural network is used to capture 
relation and graph structure of Azure authentication 
logs.

[1] Liu, Ziqi, et al. “Heterogeneous Graph Neural Networks for Malicious Account Detection.
[2] Rao, Susie Xi, et al. "xFraud: explainable fraud transaction detection." Proceedings of the VLDB Endowment 3 (2021)”

Capture of structural identity and feature identify 
of nodes

Ability to capture evolving attacks due to 
connectedness of users

Minimized efforts on feature engineering tasks
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Azure Authentication Process

• Registered resources are protected by Azure AD through the Azure authentication process

• Each access attempt is verified by Azure AD to make sure the user (through the given IP, device) has the access right 
to the application

• Azure AD logs provide information about sign-ins and how the resources are used by the users

Examples of information included in Azure AD logs about each access attempt: 

• User identity (name, email, ID)

• Application (name, ID)

• Device information (device name, browser, OS)

• IP address

• Location (city, state, country)

• Date and time

• Authentication result (success or failure, reason)
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Azure Sign-On Authentication
Sample of Azure AD Sign-in Logs

Source: https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/reference-basic-info-sign-in-logs

https://learn.microsoft.com/en-us/azure/active-directory/reports-monitoring/reference-basic-info-sign-in-logs
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Authentication Graph

• There are 3 main entities involved in each authentication event: 
• The user who initiated the access request
• The device used for the access request
• The service being requested for access

• The authentication activities can be represented by a graph
• The entities (user/device/service) are the nodes
• Involvement in an access request links the user, device, and 

service nodes with the authentication node
• Each authentication node will be connected to the 3 key entity 

nodes involved

• Each entity node can link to multiple authentication nodes
• A user can authenticate multiple times
• A device can be used to authenticate multiple times
• A service can be requested access for multiple times

User 1

Service 1

Device 1

User 2User 3

Service 2

Device 2

Device 3
Authentication 4

Authentication 1 Authentication 2

Authentication 3

: authentication node
: user node
: device node
: service node
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Graph Structure Formulation

• Input:
• G = (V, E) , where V are nodes & E are connecting edges
• V types: User (U) , Device (D), Service (S) and 

Authentication (A) 
• |V|:  size of nodes

• |V| = # unique users + # unique devices + # unique services 
+ # authentications

• X : feature matrix of node features
• Authentication features (aggregated)
• One-hot encoding (OHE) of categorical features

• E:  three types of relations connecting authentication 
node to user, service, and device nodes

• Output:
• Embedding of authentication nodes

Service

Authentication

User

Device

Initia
ted th

e Request

User Requested 
Access from 

User Requested 

Access for 
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Proposed Model
Utilizing a relational graph neural network

• Given graph G (V, E, X), learn an embedding of authentication 
• 𝐸𝑚𝑏(𝐴(𝑡)) = 𝑓(𝑈, 𝐷, 𝑆, 𝐴)
• Where 𝑈,𝐷, 𝑆, 𝐴 are heterogenous nodes of graph 𝐺
• 𝐴(𝑡) is an authentication node embedding at time 𝑡

• Since 𝐴(𝑡) nodes are distinct in time 𝑡, all of time dependent dynamic features are associated as feature in 𝐴(𝑡) nodes. 

• An 𝐸𝑚𝑏(𝐴(𝑡)) can be used for downstream task.

• For this model we tested Relational graph neural network (RGCN) as 𝑓 to learn the embedding of heterogenous Azure 
graph. 

• A semi supervised training is used to learn embedding of target nodes involved. 
• Target nodes in this case are the authentication nodes
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Relational Graph Neural Network (R-GCN)

• R-GCN generalizes GCN to handle different relationship 
between entities. 

• R-GCN uses different weights for different edge types of 
Heterogenous graph

• Unlike GCN edges of same relation 𝑟 are associated with same 
projection W!

Schlichtkrull, Michael, et al. "Modeling relational data with graph convolutional networks."

https://drive.google.com/drive/folders/1kg801W5apCrdChDNley9bTZuY9q3Wdi7
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Graph Convolutional Networks

• Variant of convolutional neural network (CNN) which operate directly 
on graphs

• CNN: operate on Euclidean space data
• GCN: operate on irregular structures defined by nodes and edges

• GCN learns the features by aggregating weighted features of 
neighboring nodes

• Applications
• Node/edge classification
• Edge prediction
• Fraud detection
• Recommendation

[1] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
[2] Understanding Graph Convolutional Networks for Node Classification. https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b
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Azure Log Dataset

• Azure log data of 3 months of 199 selected users with 2 compromised users for 4 days of login events. 

• Number of raw authentication events: 315,234

• Raw feature size: 60

• Training set:
• # Events: 45,975
• # Features: 83
• # Status failure (negative example) : 5,518

• Testing set:
• # Events: 11,972
• # Fraud events (negative example): 71

• Graph:
• # Nodes: 62K 
• # Edges: 275,850
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Feature Preprocessing

• One Hot Encoding (OHE):  categorical features
• ['riskState', 'deviceDetail.trustType', 'riskLevelDuringSignIn', 'riskLevelAggregated', 'clientAppUsed', 'deviceDetail.operatingSystem', 

'date_hour’]

• Aggregation by:  [ “service”, “user’”, “device”, “timestamp”]
• sum, unique count, max

• For semi-supervised training, a binary feature of
• StatusFailure: [ Success/Failure] 

• Indicates whether an authentication results ”success” or “failure” due to various reasons

Feature selection Node featuresAggregation + OHE 
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Experimental Result for Task 1
Task 1: Ability to identify malicious authentication requests

Averaged AUC performance of identifying malicious test 
events using RGCN & Isolation Forest

ROC of RGCN & RGCN_IF on authentication events
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Experimental Result for Task 2
Task 2: Ability to detect malicious users on aggregated authentication requests

• Evaluated by taking median of anomaly scores across 
all services requested by a user per time period. 
• Detects users’ activity on all application requested.

• Models' performance on aggregated authentication.

ROC of RGCN & RGCN_IF on user aggregation detection 
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Ranked Anomalous Based on RGCN Scores
Daily rank score of users averaged across services requested

Successful login 
detected as fraud 
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Conclusion and Next Steps

• Adapting log authentication as GNN allows us to learn a 
richer embedding of authentication on both structural 
and individual entities involved without much hand-
crafted feature learning

• By modeling every “authentication” as a target node, the 
model avoids the challenge of depending on modeling 
temporal historical user login information

• The inference on authentication is treated as an 
inductive setting on new unseen nodes

• Using RGCN semi supervised approach allows the 
learning to be less dependent on large amount of 
labelled data

• RGCN embedding on malicious authentication achieved 
better AUC performance compared with Isolation Forest
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